Advertisement

Synthesis of zinc oxide nanoparticles by dc arc dusty plasma

  • K. SenthilkumarEmail author
  • O. Senthilkumar
  • S. Morito
  • T. Ohba
  • Y. Fujita
Research Paper

Abstract

Optical emission signals of a dc arc plasma system that was used for generating ZnO nanoparticles (NPs) have been investigated in gas phase as a function of chamber pressure and arc current. In this technique, a commercially available zinc 4N rod is used as a zinc source, as well as anode in the dc circuit and ambient air as an oxygen source. A carbon rod acts as the cathode. The optical transitions of Zn(I) and O(I) in addition, excitation of high energy states of N2, CN, and atomic nitrogen lines were observed in OES due to increase of electron temperature than gas temperature (T e > T g) by reducing the chamber pressure from 760 torr to lower pressures. The as-prepared NPs show good crystalline quality with hexagonal wurtzite structure and the particle size was ranging from few nm to 100 nm in the form of rod and spherical morphologies. The impurity nature and structural properties of as-prepared NPs by dc arc plasma experiments were correlated with OES and Raman spectroscopy.

Keywords

Nanoparticles Plasma synthesis Optical emission spectroscopy Raman spectroscopy 

References

  1. Anderson T, Ren F, Pearton S, Kang BS, Wang H, Chang C, Lin J (2009) Advances in hydrogen, carbon dioxide, and hydrocarbon gas sensor technology using GaN and ZnO-based devices. Sensors 9(6):4669–4694. doi: 10.3390/s90604669 CrossRefGoogle Scholar
  2. Belz T, Find J, Herein D, Pfander N, Ruhle T, Werner H, Wohlers M, Schlogl R (1997) On the production of different carbon forms by electric arc graphite evaporation. Ber Bunsenges Phys Chem 101(4):712–725. doi: 10.1002/bbpc.19971010412 CrossRefGoogle Scholar
  3. Chen H, Gu S, Liu W, Zhu S, Zheng Y (2008) Influence of unintentional doped carbon on growth and properties of N-doped ZnO films. J Appl Phys 104(11):113511. doi: 10.1063/1.3033547 CrossRefGoogle Scholar
  4. Cosby PC (1993a) Electron-impact dissociation of nitrogen. J Chem Phys 98(12):9544–9553. doi: 10.1063/1.464385 CrossRefGoogle Scholar
  5. Cosby PC (1993b) Electron-impact dissociation of oxygen. J Chem Phys 98(12):9560–9569. doi: 10.1063/1.464387 CrossRefGoogle Scholar
  6. Fancher CA, de Clercq HL, Thomas OC, Robinson DW, Bowen KH (1998) Zinc oxide and its anion: a negative ion photoelectron spectroscopic study. J Chem Phys 109(19):8426–8429. doi: 10.1063/1.477505 CrossRefGoogle Scholar
  7. Fu H, Xu T, Zhu S, Zhu Y (2008) Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C60. Environ Sci Technol 42(21):8064–8069. doi: 10.1021/es801484x CrossRefGoogle Scholar
  8. Germany GA, Anderson RJ, Salamo GJ (1988) Electron impact excitation of the 3p(5P) state of atomic oxygen. J Chem Phys 89(4):1999–2002. doi: 10.1063/1.455098 CrossRefGoogle Scholar
  9. Henriques J, Tatarova E, Dias FM, Ferreira CM (2002) Wave driven N2–Ar discharge. II. Experiment and comparison with theory. J Appl Phys 91(9):5632–5639. doi: 10.1063/1.1462843 CrossRefGoogle Scholar
  10. Herng TS, Lau SP, Wang L, Zhao BC, Yu SF, Tanemura M, Akaike A, Teng KS (2009) Magnetotransport properties of p-type carbon-doped ZnO thin films. App Phys Lett 95(1):012505. doi: 10.1063/1.3176434 CrossRefGoogle Scholar
  11. Hidekazu T, Sougawa M, Takarabe K, Sato S, Ariyada O (2007) Use of nitrogen atmospheric pressure plasma for synthesizing carbon nitride. Jpn J Appl Phys 46(4A):1596–1599. doi: 10.1143/JJAP.46.1596 CrossRefGoogle Scholar
  12. Ismagilov RR, Volkov AP, Shvets PV, Obraztsov AN (2009) Physical and chemical processes in gas-discharge plasma during the deposition of nanocarbon films. Prot Met Phys Chem Surf 45(6):652–655. doi: 10.1134/S2070205109060021 CrossRefGoogle Scholar
  13. Kachynski AV, Kuzmin AN, Nyk M, Roy I, Prasad PN (2008) Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine. J Phys Chem C Nanomater Interfaces 112(29):10721–10724. doi: 10.1021/jp801684j CrossRefGoogle Scholar
  14. Kim YJ, Yoo J, Kwon BH, Hong YJ, Lee C, Yi G (2008) Position-controlled ZnO nanoflower arrays grown on glass substrates for electron emitter application. Nanotechnology 19(31):315202. doi: 10.1088/0957-4484/19/31/315202 CrossRefGoogle Scholar
  15. Lavrov EV, Herklotz F, Weber J (2009) Identification of hydrogen molecules in ZnO. Phys Rev Lett 102(18):185502. doi: 10.1103/PhysRevLett.102.185502 CrossRefGoogle Scholar
  16. Lee JS, Islam MS, Kim S (2006) Direct formation of catalyst-free ZnO nanobridge devices on an etched Si substrate using a thermal evaporation method. Nano Lett 6(7):1487–1490. doi: 10.1021/nl060883d CrossRefGoogle Scholar
  17. Lee K, Kim Y, Sun Y, West D, Zhao Y, Chen Z, Zhang SB (2010) Hole-mediated hydrogen spillover mechanism in metal-organic frameworks. Phys Rev Lett 104(23):236101. doi: 10.1103/PhysRevLett.104.236101 CrossRefGoogle Scholar
  18. Liu L, Xu J, Wang D, Jiang M, Wang S, Li B, Zhang Z, Zhao D, Shan C, Yao B, Shen DZ (2012) p-Type conductivity in N-doped ZnO: the role of the NZn–VO complex. Phys Rev Lett 108(21):215501. doi: 10.1103/PhysRevLett.108.215501 CrossRefGoogle Scholar
  19. Lu Y, Tao Z, Hong M (1999) Characteristics of excimer laser induced plasma from an aluminum target by spectroscopic study. Jpn J Appl Phys 38(5A):2958–2963. doi: 10.1143/JJAP.38.2958 CrossRefGoogle Scholar
  20. Lyons JL, Janotti A, Van de Walle CG (2009) Why nitrogen cannot lead to p-type conductivity in ZnO. Appl Phys Lett 95(25):252105. doi: 10.1063/1.3274043 CrossRefGoogle Scholar
  21. Ma Q, Saraswati TE, Ogino A, Nagatsu M (2011) Improvement of UV emission from highly crystalline ZnO nanoparticles by pulsed laser ablation under O2/He glow discharge. Appl Phys Lett 98(5):051908. doi: 10.1063/1.3551534 CrossRefGoogle Scholar
  22. Mason RC (1938) Gas temperature and population of atomic levels in a carbon arc at low pressure. Physica 5(8):777–784. doi: 10.1016/S0031-8914(38)80202-0 CrossRefGoogle Scholar
  23. Mohanta A, Singh V, Thareja RK (2008) Photoluminescence from ZnO nanoparticles in vapor phase. J Appl Phys 104(6):064903. doi: 10.1063/1.2977756 CrossRefGoogle Scholar
  24. Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24(3):197–219. doi: 10.1016/S0360-1285(97)00028-2 CrossRefGoogle Scholar
  25. Pravica L, Cvejanović D, Williams JF, Napier SA (2007) Angular-momentum-dependent Fano profiles in excited zinc atoms. Phys Rev A 75(3):030701(R). doi: 10.1103/PhysRevA.75.030701 CrossRefGoogle Scholar
  26. Roy D, Chhowalla M, Hellgren N, Clyne TW, Amaratunga GAJ (2004) Probing carbon nanoparticles in CNx thin films using Raman spectroscopy. Phys Rev B 70(3):035406. doi: 10.1103/PhysRevB.70.035406 CrossRefGoogle Scholar
  27. Senthilkumar O, Watanabe E, Nakai R, Nishimoto N, Fujita Y (2007) Growth of nitrogen-doped ZnO films by MOVPE using diisopropylzinc and tertiary-butanol. J Cryst Growth 298:491–494. doi: 10.1016/j.jcrysgro.2006.10.066 CrossRefGoogle Scholar
  28. Senthilkumar K, Tokunaga M, Okamoto H, Senthilkumar O, Lin J, Urban B, Neogi A, Fujita Y (2010a) Multiphonon scattering and nonradiative decay in ZnO nanoparticles. Phys Status Solidi C 7(6):1586–1588. doi: 10.1002/pssc.200983203 CrossRefGoogle Scholar
  29. Senthilkumar K, Tokunaga M, Okamoto H, Senthilkumar O, Fujita Y (2010b) Hydrogen related defect complexes in ZnO nanoparticles. Appl Phys Lett 97(9):091907. doi: 10.1063/1.3485049 CrossRefGoogle Scholar
  30. Shukla G, Khare A (2010) Spectroscopic studies of laser ablated ZnO plasma and correlation with pulsed laser deposited ZnO thin film properties. Laser Part Beams 28(01):149–155. doi: 10.1017/S0263034610000029 CrossRefGoogle Scholar
  31. Staack D, Farouk B, Gutsol A, Fridman A (2005) Characterization of a dc atmospheric pressure normal glow discharge. Plasma Sources Sci Technol 14(4):700–711. doi: 10.1088/0963-0252/14/4/009 CrossRefGoogle Scholar
  32. Stradi D, Illas F, Bromley ST (2010) Prospective role of multicenter bonding for efficient and selective hydrogen transport. Phys Rev Lett 105:045901. doi: 10.1103/PhysRevLett.105.045901 CrossRefGoogle Scholar
  33. Tan ST, Sun X, Yu ZG, Wu P, Yo GQ, Kwong DL (2007) p-Type conduction in unintentional carbon-doped ZnO thin films. Appl Phys Lett 91(7):072101. doi: 10.1063/1.2768917 CrossRefGoogle Scholar
  34. Tang K, Gu S, Zhu S, Liu W, Ye J, Zhu J, Zhang R, Zheng Y, Sun X (2008) Carbon clusters in N-doped ZnO by metal-organic chemical vapor deposition. Appl Phys Lett 93(13):132107. doi: 10.1063/1.2992197 CrossRefGoogle Scholar
  35. Tsukazaki A, Kubota M, Ohtomo A, Onuma T, Ohatani K, Ohno H, Chichibu SF, Kawasaki M (2005) Blue light-emitting diode based on ZnO. Jpn J Appl Phys 44(21):L 643–L 645. doi: 10.1143/JJAP.44.L643 CrossRefGoogle Scholar
  36. Tuomisto F, Ranki V, Saarinen K, Look DC (2003) Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO. Phys Rev Lett 91(20):205502. doi: 10.1103/PhysRevLett.91.205502 CrossRefGoogle Scholar
  37. Weintraub B, Deng Y, Wang ZL (2007) Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis. J Phys Chem C 111(28):10162–10165. doi: 10.1021/jp073806v CrossRefGoogle Scholar
  38. Wrachtrup J (2010) Defect center room-temperature quantum processors. Proc Natl Acad Sci USA 107(21):9479–9480. doi: 10.1073/pnas.1004033107 CrossRefGoogle Scholar
  39. Yan Y, Zhang SB, Pantelides ST (2001) Control of doping by impurity chemical potentials: predictions for p-type ZnO. Phys Rev Lett 86(25):5723. doi: 10.1103/PhysRevLett.86.5723 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • K. Senthilkumar
    • 1
    • 2
    Email author
  • O. Senthilkumar
    • 1
    • 2
  • S. Morito
    • 2
  • T. Ohba
    • 2
  • Y. Fujita
    • 2
  1. 1.Research Project Promotion InstituteShimane UniversityMatsueJapan
  2. 2.Interdisciplinary Graduate School of Science and EngineeringShimane UniversityMatsueJapan

Personalised recommendations