Advertisement

Continuous tubular nanofibers of vanadium pentoxide by electrospinning for energy storage devices

  • Neeta L. Lala
  • Rajan Jose
  • Mashitah M. Yusoff
  • Seeram Ramakrishna
Research Paper

Abstract

Tubular nanofibers (TNFs) of vanadium pentoxide (V2O5) were synthesized by electrospinning technique using a single spinneret for the first time by controlling the properties of the precursor solution. A partially miscible polymeric solution of vanadium oxytrihydroxide [VO(OH)3] was produced by hydrolysis of vanadyl acetylacetonate in Poly(vinylpyrrolidone) (PVP). The phase-separated polymer solution formed the core of the electrospun fibers whereas the VO(OH)3 formed the shell; the core PVP has been removed by controlled heat treatment. The TNFs had an inner diameter ~60 nm and wall thickness ~±100 nm. The capacitive behavior of the V2O5 TNFs was studied using cyclic voltammetry and galvanostatic cycling techniques. The studies showed ideal stable supercapacitive characteristics in the electrospun V2O5 TNFs.

Keywords

V2O5 Nanofibers Nanotubes Electrospinning Supercapacitors 

Notes

Acknowledgments

The authors wish to acknowledge the RDU 110330 Grant received from Universiti Malaysia Pahang (UMP) and exploratory research Grant scheme (ERGS, RDU 110602) from the Ministry of Higher Education (MOHE) Malaysia for the development of one-dimensional nanostructured materials for efficient energy storage.

References

  1. Asim N, Radiman S, Yarmo MA, Banaye Golriz MS (2009) Vanadium pentoxide: synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous Mesoporous Mater 120(3):397–401CrossRefGoogle Scholar
  2. Avansi Jr W, Ribeiro C, Leite ER, Mastelaro VR (2010) Growth kinetics of vanadium pentoxide nanostructures under hydrothermal conditions. J Cryst Growth 312(23):3555–3559CrossRefGoogle Scholar
  3. Avansi W, Maia LJQ, Ribeiro C, Leite ER, Mastelaro VR (2011) Local structure study of vanadium pentoxide 1D-nanostructures. J Nanopart Res 13(10):4937–4946CrossRefGoogle Scholar
  4. Ban C, Chernova NA, Whittingham MS (2009) Electrospun nano-vanadium pentoxide cathode. Electrochem Commun 11(3):522–525CrossRefGoogle Scholar
  5. Benmoussa M, Outzourhit A, Bennouna A, Ameziane EL (2002) Electrochromism in sputtered V2O5 thin films: structural and optical studies. Thin Solid Films 405(1–2):11–16CrossRefGoogle Scholar
  6. Dhayal Raj A, Pazhanivel T, Suresh Kumar P, Mangalaraj D, Nataraj D, Ponpandian N (2010) Self assembled V2O5 nanorods for gas sensors. Curr Appl Phys 10:531–537CrossRefGoogle Scholar
  7. Ding N, Liu S, Feng X, Gao H, Fang X, Xu J, Tremel W, Lieberwirth I, Chen C (2009) Hydrothermal growth and characterization of nanostructured vanadium-based oxides. Cryst Growth Des 9(4):1723–1728CrossRefGoogle Scholar
  8. Ferreira OP, Souza Filho AG, Alves OL (2010) Recycling dodecylamine intercalated vanadate nanotubes. J Nanopart Res 12(1):367–372Google Scholar
  9. Gao L , Wang X, Fei L, Ji M, Zheng H, Zhang H, Shen T, Yang K (2005) Synthesis and electrochemical properties of nanocrystalline V2O5 flake via a citric acid-assistant sol-gel method. J Crystal Growth 281(2–4):463–467Google Scholar
  10. Huang J-S, Chou C-Y, Liu M-Y, Tsai K-H, Lin W-H, Lin C-F (2009) Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods. Org Electro 10(6):1060–1065Google Scholar
  11. Im JS, Kwon O, Kim YH, Park SJ, Lee Y (2008) The effect of embedded vanadium catalyst on activated electrospun CFs for hydrogen storage. Microporous Mesoporous Mater 115(3):514–521Google Scholar
  12. Jin AP, Chen W, Zhu QY, Jian ZL (2010) Multi-electrochromism behaviour and electrochromic mechanism of electrodeposited molybdenum doped vanadium pentoxide films. Electrochim Acta 55(22):6408–6414Google Scholar
  13. Kaliyamoorthy A, Kandikere RP (2011) Efficient synthesis of carbonyl compounds: oxidation of azides and alcohols catalyzed by vanadium pentoxide in water using tert-butylhydroperoxide. Tetrahedron 67(44):8544–8551CrossRefGoogle Scholar
  14. Kraus W, Nolze G (1996) POWDER CELL-a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303CrossRefGoogle Scholar
  15. Lala NL, Lim TC, Susan L, Ramakrishna S (2010) The effect of carbon black and carbon nanotube additions on electrical resistivity of Nylon-6 nanofiber composites and thin films. Int J Novel Mater 1:11–17Google Scholar
  16. Levi R, Bar-Sadan M, Albu-Yaron A, Popovitz-Biro R, Houben L, Shahar C, Enyashin A, Seifert G, Prior Y, Tenne R (2010) Hollow V2O5 nanoparticles (fullerene-like analogues) prepared by laser ablation. J Am Chem Soc 132(32):11214–11222CrossRefGoogle Scholar
  17. Liu J, Xue D (2010) Cation-induced coiling of vanadium pentoxide nanobelts. Nanoscale Res Lett 5(10):1619–1626CrossRefGoogle Scholar
  18. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Letts 10(11):4750–4755CrossRefGoogle Scholar
  19. Moshfegh AZ, Ignatiev A (1990) Photo-enhanced catalytic decomposition of isopropanol on V2O5. Catal Lett 4(2):113–122CrossRefGoogle Scholar
  20. Panels JE, Joo YL (2006) Incorporation of vanadium oxide in silica nanofiber mats via electro-spinning and sol-gel synthesis. J Nanomater ID 41327:1–10. doi: 10.1155/JNM/2006/41327 CrossRefGoogle Scholar
  21. Pol VG, Pol SV, Calderon-Moreno JM, Gedanken A (2009) Core-shell vanadium oxide-carbon nanoparticles: synthesis, characterization, and luminescence properties. J Phys Chem C 113(24):10500–10504CrossRefGoogle Scholar
  22. Ramakrishna S, Jose R, Archana PS, Nair AS, Balamurugan R, Venugopal J, Teo WE (2010) Science and engineering of electrospun nanofibers for advances in clean energy, water filtration, and regenerative medicine. J Mater Sci 45(23):6283–6312CrossRefGoogle Scholar
  23. Shahid M, Rhen DS, Shakir I, Patole SP, Yoo JB, Yang S-J, Kang DJ (2010) Facile synthesis of single crystalline vanadium pentoxide nanowires and their photocatalytic behavior. Mater Lett 64(22):2458–2461Google Scholar
  24. Szabolcs B (2011) A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films 519(6):1761–1771CrossRefGoogle Scholar
  25. Teo WE, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12(1):013002CrossRefGoogle Scholar
  26. Viswanathamurthi P, Bhattarai N, Kim HY, Lee DR (2003) Vanadium pentoxide nanofibers by electrospinning. Scr Mater 49(6):577–581CrossRefGoogle Scholar
  27. Wang Y, Su Q, Chen CH, Yu ML, Han GJ, Wang GQ, Xin K, Lan W, Liu XQ (2010) Low temperature growth of vanadium pentoxide nanomaterials by chemical vapour deposition using VO(acac)2 as precursor. J Phys D Appl Phys 43(18):185102–185107CrossRefGoogle Scholar
  28. Wang J-G, Yang Y, Huang Z-H, Kang FY (2011) Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors. Electrochim Acta 56(25):9240–9247CrossRefGoogle Scholar
  29. Wee G, Soh HZ, Cheah YL, Mhaisalkar SG, Srinivasan M (2010) Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes. J Mater Chem 20:6720–6725CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Faculty of Industrial Sciences and Technology (FIST)Universiti Malaysia PahangPahangMalaysia
  2. 2.NUS Center for Nanofibers and NanotechnologySingaporeSingapore
  3. 3.Department of Mechanical Engineering, Engineering DriveNational University of SingaporeSingaporeSingapore
  4. 4.King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations