Surface anisotropy change of CoFe2O4 nanoparticles depending on thickness of coated SiO2 shell

  • Mustafa Coşkun
  • Musa Mutlu Can
  • Özlem Duyar Coşkun
  • Mustafa Korkmaz
  • Tezer Fırat
Research Paper

Abstract

We systematically investigated the effective surface anisotropy of CoFe2O4 nanoparticles dependant on the thickness of SiO2 shell. XRD (X-ray powder diffraction) patterns and TEM (transmission electron microscopy) micrographs were used to investigate the structure of particles and thickness of SiO2 shell, respectively. The thicknesses of SiO2 shell with 5.41 nm on CoFe2O4 nanoparticles were increased up to 14.04 ± 0.05 nm by changing the amount of added TEOS by, 0.10, 0.25, 0.50, 1.00, 1.50, and 2.50 mL. The increase of the SiO2 thickness shell decreased the effective anisotropy due to decline the effectiveness of the dipolar magnetostatic interactions, determined from Vogel–Fulcher equation, between the particles. The declines in the Keff values stabled at around 3.76 ± 0.11 × 105 J/m3 for TEOS amount higher than 1.5 mL.

Keywords

Dipolar interaction Magnetic anisotropy Ferrite nanoparticles SiO2 shell 

References

  1. Ahn Y, Jung Choi E, Kim S, Ok HN (2001) Magnetization and Mössbauer study of cobalt ferrite particles from nanophase cobalt iron carbonate. Mater Lett 50:47–52CrossRefGoogle Scholar
  2. Aslam M, Fu L, Li S, Dravid VP (2005) Silica encapsulation and magnetic properties of FePt nanoparticles. J Coll Inter Sci 290:444–449CrossRefGoogle Scholar
  3. Bae CJ, Hwang Y, Park J, An K, Lee Y, Lee J, Hyeon T, Park JG (2007) Inter-particle and interfacial interaction of magnetic nanoparticles. J Magn Magn Mater 310:E806–E808CrossRefGoogle Scholar
  4. Bakuzis AF, Morais PC, Pelegrini F (1999) Surface and exchange anisotropy fields in MnFe2O4 nanoparticles: size and temperature effects. J Appl Phys 85:7480–7482CrossRefGoogle Scholar
  5. Bansmann J, Baker SH, Binns C, Blackman JA, Bucherd J-P, Dorantes-Davila J, Dupuis V, Favre L, Kechrakos D, Kleibert A, Meiwes-Broer K-H, Pastore GM, Perez A, Toulemonde O, Trohidou KN, Tuaillon J, Xie Y (2005) Magnetic and structural properties of isolated and assembled clusters. Surf Sci Report 56:189–275CrossRefGoogle Scholar
  6. Ben Tahar L, Smiri LS, Artus M, Joudrier A-L, Herbst F, Vaulay MJ, Ammar S, Fievet F (2007) Characterization and magnetic properties of Sm- and Gd-substituted CoFe2O4 nanoparticles prepared by forced hydrolysis in polyol. Mater Res Bull 42:1888–1896CrossRefGoogle Scholar
  7. Bessais L, Ben Jaffel L, Dormann JL (1992) Relaxation time of fine magnetic particles in uniaxial symmetry. Phys Rev B 45:7805–7815CrossRefGoogle Scholar
  8. Brown WF (1959) Relaxation behavior of fine magetic particles. J Appl Phys 30(4):130–132CrossRefGoogle Scholar
  9. Caizer C, Stefanescu M (2002) Magnetic characterization of nanocrystalline Ni–Zn ferrite powder prepared by the glyoxylate precursor method. J Appl Phys D 35:3035–3040CrossRefGoogle Scholar
  10. Cannas C, Musinu A, Ardu A, Orru F, Peddis D, Casu M, Sanna R, Angius F, Diaz G, Piccaluga G (2010) CoFe2O4 and CoFe2O4/SiO2 Core/Shell nanoparticles: magnetic and spectroscopic study. Chem Mater 22:3353–3361CrossRefGoogle Scholar
  11. Caruntu D, Remond Y, Chou NH, Jun MJ, Caruntu G, He JB, Goloverda G, O’Connor CJ, Kolesnichenko VL (2002) Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorganic Chem 41:6137–6146CrossRefGoogle Scholar
  12. Caruntu D, Caruntu G, Chen Y, O’Connor CJ, Goloverda G, Kolesnichenko VL (2004) Synthesis of variable-sized nanocrystals of Fe3O4 with high surface reactivity. Chem Mater 16:5527–5534CrossRefGoogle Scholar
  13. Caruntu D, Caruntu G, O’Connor CJ (2007) Magnetic properties of variable-sized Fe3O4 nanoparticles synthesized from non-aqueous homogeneous solutions of polyols. J Phys D 40:5801–5809CrossRefGoogle Scholar
  14. Casu A, Casula MF, Corrias A, Falqui A, Loche D, Marras S (2007) Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite aerogels. J Phys Chem C 111:916–922CrossRefGoogle Scholar
  15. Chen Z-G, Tang D-Y (2007) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Bioprocess Biosyst Eng 30:243–249CrossRefGoogle Scholar
  16. Chen Y, Snyder JE, Schwichtenberg CR, Dennis KW, McCallum RW, Jiles DC (1999) Metal-bonded Co-ferrite composites for magnetostrictive torque sensor applications. IEEE Tran Magn 35(5):3652–3654CrossRefGoogle Scholar
  17. Chen JS, Chen C, Liu J, Xu R, Qiao SZ, Lou XW (2011) Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chem Commun 47:2631–2633CrossRefGoogle Scholar
  18. Coşkun M, Korkmaz M, Fırat T, Jaffari GH, Shah SI (2010) Synthesis of SiO2 coated NiFe2O4 nanoparticles and the effect of SiO2 shell thickness on the magnetic properties. J Appl Phys 107:09B523CrossRefGoogle Scholar
  19. Davies KJ, Wells S, Upadhyay RV, Charles SW, O’Grady K, El Hilo M, Meazi T, Mørup S (1995) The observation of multi-axial anisotropy in ultrafine cobalt ferrite particles used in magnetic fluids. J Magn Magn Mater 149(1–2):14–18CrossRefGoogle Scholar
  20. de la Presa P, Multigner M, Morales MP, Rueda T, Fernandez-Pinel E, Hernando A (2007) Synthesis and characterization of FePt/Au core–shell nanoparticles. J Magn Magn Mater 316(2):E753–E755CrossRefGoogle Scholar
  21. Demirel B, Yenigün O, Bekbölet M (1999) Removal of Cu, Ni and Zn from waste waters by the ferrite process. Environ Tech 20(9):963–970CrossRefGoogle Scholar
  22. Didukh P, Greneche JM, Slawska-Waniewska A, Fannin PC, Casas L (2002) Surface effects in CoFe2O4 magnetic fluids studied by Mössbauer spectrometry. J Magn Magn Mater 242–245:613–616CrossRefGoogle Scholar
  23. Djurberg C, Svedlindh P, Nordblad P, Hansen MF, Bødker F, Mørup S (1997) Dynamics of an interacting particle system: evidence of critical slowing down. Phys Rev Lett 79(25):5154–5157CrossRefGoogle Scholar
  24. Fujiwara A, Tada M, Nakagawa T, Abe M (2008) Permeability and electric resistivity of spin-sprayed Zn ferrite films for high-frequency device applications. J Magn Magn Mater 320(8):L67–L69CrossRefGoogle Scholar
  25. Garcia-Otero J, Porto M, Rivas J, Bunde A (2000) Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles. Phys Rev Lett 84:167–170CrossRefGoogle Scholar
  26. Gilmore K, Idzerda YU, Klem MT, Allen M, Douglas T, Young M (2005) Surface contribution to the anisotropy energy of spherical magnetite particles. J Appl Phys 97:10B301CrossRefGoogle Scholar
  27. Giri J, Pradhan P, Somani V, Chelawat H, Chhatre S, Banerjee R, Bahadur D (2008) Synthesis and characterizations of water-based ferrofluids of substituted ferrites [Fe1-xBxFe2O4, B = Mn, Co (x = 0–1)] for biomedical applications. J Magn Magn Mater 320(5):724–730CrossRefGoogle Scholar
  28. Hadjipanayis GC (1999) Nanophase hard magnets. J Magn Magn Mater 200:373–391CrossRefGoogle Scholar
  29. Harasawa T, Suzuki R, Shimizu O, Ölçer S, Eleftheriou E (2010) Barium-ferrite particulate media for high-recording-density tape storage systems. IEEE Tran Magn 46(6):1894–1897CrossRefGoogle Scholar
  30. He YP, Wang SQ, Li CR, Miao YM, Wu ZY, Zou BS (2005) Synthesis and characterization of functionalized silica-coated Fe3O4 superparamagnetic nanocrystals for biological applications. J Phys D Appl Phys 38:1342–1350CrossRefGoogle Scholar
  31. Hencl V, Mucha P, Orlikova A, Leskova D (1995) Utilization of ferrites for water treatment. Water Res 29(1):383–385CrossRefGoogle Scholar
  32. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501CrossRefGoogle Scholar
  33. Jinxing P, Yun G, Yan X, Chaocan Z (2005) Preparation of SiO2 nanoparticles by silicon and their dispersion stability. J Wuhan Univ Technol: Mater Sci Edit 20:74–76CrossRefGoogle Scholar
  34. Kant KM, Sethupathi K, Rao MSR (2008) Tuning the magnetization dynamics of silica-coated Fe3O4 core-shell nanoparticles by shell thickness control. J Appl Phys 103:07D501CrossRefGoogle Scholar
  35. Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36CrossRefGoogle Scholar
  36. Kodama RH, Berkowitz AE, McNiff EJ, Foner S (1997) Surface spin disorder in ferrite nanoparticles. J Appl Phys 81(8):5552–5557CrossRefGoogle Scholar
  37. Latorre-Esteves M, Cortés A, Torres-Lugo M, Rinaldi C (2009) Synthesis and characterization of carboxymethyl dextran-coated Mn/Zn ferrite for biomedical applications. J Magn Magn Mater 321(19):3061–3066CrossRefGoogle Scholar
  38. Lee DC, Mikulec FV, Pelaez JM, Koo B, Korgel BA (2006) Synthesis and magnetic properties of silica-coated FePt nanocrystals. J Phys Chem B 110:11160–11166CrossRefGoogle Scholar
  39. Limaye MV, Singh SB, Date SK, Kothari D, Reddy VR, Gupta A, Sathe V, Choudhary RJ, Kulkarni SK (2009) High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J Phys Chem B 113:9070–9076CrossRefGoogle Scholar
  40. Lizuka T, Lida S (1996) The magnetic anisotropy induced by electron diffusion in Co1+2xFe2−2xO4 and Fe1−2xNi2xCo2O4. J Phys Soc Jpn 21:222–231Google Scholar
  41. López JL, Pfannes HD, Paniago R, Sinnecker JP, Novak MA (2008) Investigation of the static and dynamic magnetic properties of CoFe2O4 nanoparticles. J Magn Magn Mater 320:E327–E330CrossRefGoogle Scholar
  42. Ma DL, Veres T, Clim L, Normandin F, Guan JW, Kingston D, Simard B (2007) Superparamagnetic Fe(x)Oy@SiO2 core-shell nanostructures: controlled synthesis and magnetic characterization. J Phys Chem C 111:1999–2007CrossRefGoogle Scholar
  43. Maaz K, Karim S, Mumtaz A, Hasanain SK, Liu J, Duan JL (2009) Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route. J Magn Magn Mater 321:1838–1842CrossRefGoogle Scholar
  44. Matsumoto M, Morisako A, Takei S (2001) Characteristics of Ba–ferrite thin films for magnetic disk media application. J Alloy Comp 326(1–2):215–220CrossRefGoogle Scholar
  45. Morel AL, Nikitenko SI, Gionnet K, Wattiaux A, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) Sonochemical approach to the synthesis of Fe3O4@SiO2 core–shell nanoparticles with tunable properties. ACS Nano 2:847–856CrossRefGoogle Scholar
  46. Mukadam MD, Yusuf SM, Sharma P, Kulshreshtha SK, Dey GK (2005) Dynamics of spin clusters in amorphous Fe2O3. Phys Rev B 72:174408CrossRefGoogle Scholar
  47. Naughton BT, Majewski P, Clarke DR (2007) Magnetic properties of nickel–zinc ferrite toroids prepared from nanoparticles. J Amer Ceram Soc 90:3547–3553CrossRefGoogle Scholar
  48. Papaefthymiou GC, Devlin E, Simopoulos A, Yi DK, Riduan SN, Lee SS, Ying JY (2009) Interparticle interactions in magnetic core/shell nanoarchitectures. Phys Rev B 80:024406CrossRefGoogle Scholar
  49. Pardavi-Horvath M (2000) Microwave applications of soft ferrites. J Magn Magn Mater 215–216:171–183CrossRefGoogle Scholar
  50. Shenker H (1957) Magnetic anisotropy of cobalt ferrite (Co1.01Fe2.00O3.62) and nickel cobalt ferrite (Ni0.72Fe0.20Co0.08Fe2O4). Phys Rev B 107:1246CrossRefGoogle Scholar
  51. Singh V, Seehra MS, Bonevich J (2009) Ac susceptibility studies of magnetic relaxation in nanoparticles of Ni dispersed in silica. J Appl Phys 105:07B518CrossRefGoogle Scholar
  52. Tago T, Hatsuta T, Miyajima K, Kishida M, Tashiro S, Wakabayashi K (2002) Novel synthesis of silica-coated ferrite nanoparticles prepared using water-in-oil microemulsion. J Amer Ceram Soc 85(9):2188–2194CrossRefGoogle Scholar
  53. Taketomi S (1998) Spin-glass-like complex susceptibility of frozen magnetic fluids. Phys Rev E 57:3073CrossRefGoogle Scholar
  54. Tang D, Yuan R, Chai Y, An H (2007) Magnetic-core/porous-shell CoFe2O4/SiO2 composite nanoparticles as immobilized affinity supports for clinical immunoassays. Adv Funct Mater 17:976–982CrossRefGoogle Scholar
  55. Thapa D, Palkar VR, Kurup MB, Malik SK (2004) Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 58(21):2692–2694CrossRefGoogle Scholar
  56. Trohidou KN (2005) In: Fiorani D (ed) Surface effects in magnetic nanoparticles. Springer, New York, p 46Google Scholar
  57. Tung LD, Kolesnichenko V, Caruntu D, Chou NH, O’connor CJ, Spinu L (2003) Magnetic properties of ultrafine cobalt ferrite particles. J Appl Phys 93:7486–7488CrossRefGoogle Scholar
  58. Vogt C, Toprak MS, Muhammed M, Laurent S, Bridot J-L, Muller RN (2010) High quality and tuneable silica shell–magnetic core nanoparticles. J Nanopart Res 12:1137–1147CrossRefGoogle Scholar
  59. Wu M, Ma YQ, Liu Y, Bi H, Fang Q, Niu H, Chen Q (2008) Chainlike assembly of magnetite coated with SiO2 nanostructures induced by an applied magnetic field. Mater Res Bull 43(5):1321–1326CrossRefGoogle Scholar
  60. Yang HT, Hasegawa D, Takahashi M, Ogawa T (2009) Achieving a noninteracting magnetic nanoparticle system through direct control of interparticle spacing. Appl Phys Lett 94:013103CrossRefGoogle Scholar
  61. Yi DK, Lee SS, Papaefthymiou GC, Ying JY (2006) Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites. Chem Mater 18:614–619CrossRefGoogle Scholar
  62. Zhoua WL, Carpenter EE, Lin J, Kumbhar A, Sims J, O’Connor CJ (2001) Nanostructures of gold coated iron core–shell nanoparticles and the nanobands assembled under magnetic field. Eur Phys J D 16:289–292CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mustafa Coşkun
    • 1
    • 2
  • Musa Mutlu Can
    • 3
  • Özlem Duyar Coşkun
    • 1
  • Mustafa Korkmaz
    • 1
  • Tezer Fırat
    • 1
  1. 1.Department of Physics EngineeringHacettepe UniversityAnkaraTurkey
  2. 2.Ministry of Energy and Natural ResourcesAnkaraTurkey
  3. 3.Faculty of Engineering and Natural SciencesNanotechnology Research and Application Center, Sabancı UniversityIstanbulTurkey

Personalised recommendations