Advertisement

Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles

  • Mariana VoicescuEmail author
  • Sorana Ionescu
  • Daniel G. Angelescu
Research Paper

Abstract

The photophysical properties of the bovine serum albumin (BSA) and human serum albumin (HSA) adsorbed on (non) functionalized Ag(0) nanoparticles have been studied by spectroscopic techniques. The surface plasmon resonance kinetic of the BSA/HSA-Ag(0) nanoparticle complexes has been assessed by UV–Vis absorption spectroscopy. Transmission electron microscopy analysis showed that the average size of the particles is ~9 nm and the core–shell structure of the protein-Ag(0) nanoparticle complexes has been supported by UV–Vis spectra. The structure, stability, dynamics, and conformation of the proteins have been investigated by steady-state, time-resolved fluorescence, and circular dichroism spectroscopy. Insights of the HSA conformation at the nanoparticle surface were obtained by the Monte Carlo simulations carried out using an appropriate coarse-grained model. The HSA conformation upon adsorption on the nanoparticle surface is distorted so that the Trp fluorescence is quenched and the α-helix content diminished. The adsorbed protein exhibited an extended conformation with Trp residue depleted from the nanoparticle surface and rather located toward the protein boundary. Experimental and simulated experiments were in good agreements and the results are discussed in terms of functional properties of the serum albumins in protein–Ag(0) nanoparticle complex.

Keywords

Silver nanoparticles Proteins Fluorescence Monte Carlo simulations 

Notes

Acknowledgments

This study has been performed in the frame of the Romanian Academy programme and II. 8 theme of the INFRANANOCHEM Project. DA acknowledges the use of the HPC infrastructure developed under NASR Grant, Capacities Project CpI 84/2007. The authors are indebted to Dr. Valentin S. Teodorescu for Transmission Electron Microscopy.

References

  1. Abdullin TI, Bondar OV, Shtyrlin YG et al (2010) Pluronic block copolymer-mediated interactions of organic compounds with noble metal nanoparticles for SERS analysis. Langmuir 26:5153–5159CrossRefGoogle Scholar
  2. Akinchina A, Linse P (2002) Monte Carlo simulations of polyion–macroion complexes. 1. Equal absolute polyion and macroion charges. Macromolecules 35:5183–5193CrossRefGoogle Scholar
  3. Alivisatos AP (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRefGoogle Scholar
  4. Allara D (1995) In: Ulman A (ed) Characterization of organic thin films. Butterworth-Heinemann, BostonGoogle Scholar
  5. Amendola V, Bakr OM, Stellacci F (2010) A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: effect of shape, size, structure, and assembly. Plasmonics 5:85–97CrossRefGoogle Scholar
  6. Amiri M, Jankeje K, Albani JR (2010) Origin of fluorescence lifetimes in human serum albumin. studies on native and denatured protein. J Fluoresc 20:651–656CrossRefGoogle Scholar
  7. Angelescu DG, Stenhammar J, Linse P (2007) Packaging of a flexible polyelectrolyte inside a viral capsid: effect of salt concentration and salt valence. J Phys Chem B 111:8477–8485CrossRefGoogle Scholar
  8. Angelescu DG, Vasilescu M, Somoghi R et al (2010) Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloid Surf A 366:155–162CrossRefGoogle Scholar
  9. De-Llanos R, Sánchez-Cortes S, Domingo C et al (2011) Surface plasmon effects on the binding of antitumoral drug emodin to bovine serum albumin. J Phys Chem C 115:12419–12429CrossRefGoogle Scholar
  10. Elghanian R, Storhoff JJ, Mucic RC et al (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1080CrossRefGoogle Scholar
  11. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-egfr antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834CrossRefGoogle Scholar
  12. El-Sayed IH, Huang X, El-Sayed MA (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135CrossRefGoogle Scholar
  13. Esumi K, Matsushima Y, Torigoe K (1995) Preparation o rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11:3285–3287CrossRefGoogle Scholar
  14. Evans TW (2002) Review article: albumin as a drug-biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther 16:6–11CrossRefGoogle Scholar
  15. Furno F, Morley KS, Wong B et al (2004) Silver nanoparticles and polymeric medical devices; a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024CrossRefGoogle Scholar
  16. Gu H, Xu K, Xu C, Xu B (2006) Biofunctional magnetic nanoparticules for protein separation and pathogen detection. Chem Commun 7(9):941–946CrossRefGoogle Scholar
  17. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604CrossRefGoogle Scholar
  18. Hansen UK (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53Google Scholar
  19. Hayat MA (1991) Colloidal gold: principles, methods, and applications. Academic Press, San DiegoGoogle Scholar
  20. Hostetler MJ, Templeton AC, Murray RW (1999) Dynamic of place- exchanged reactions on monolayer-protected gold cluster molecules. Langmuir 15:3782–3789CrossRefGoogle Scholar
  21. Huang X, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120CrossRefGoogle Scholar
  22. Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2:681–693CrossRefGoogle Scholar
  23. Huo Q (2007) A perspective on bioconjugated nanoparticles and quantum dots. Colloid Surf B Biointerf 59:1–10CrossRefGoogle Scholar
  24. Ingram RS, Hostetler MJ, Murray RW (1997) Poly-hetero-ω-functionalized alkanethiolate-stabilized gold cluster compound. J Am Chem Soc 119:9175–9178CrossRefGoogle Scholar
  25. Jain PK, Lee KS, El-Sayed IH et al (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefGoogle Scholar
  26. Jain PK, Huang W, El-Sayed MA (2007a) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticles pairs: a plasmon rule equation. Nano Lett 7(7):2080–2088CrossRefGoogle Scholar
  27. Jain PK, El-Sayed IH, El-Sayed MA (2007b) Au nanoparticles target cancer. Nano Today 2:18–29CrossRefGoogle Scholar
  28. Jain PK, Huanh X, El-Sayed IH et al (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586CrossRefGoogle Scholar
  29. Jensen PS, Chi Q, Grumsen FB et al (2005) Gold nanoparticles assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer. J Phys Chem C 111:6124–6132CrossRefGoogle Scholar
  30. Johansson JS (1997) Binding of the volatile anesthetic chloroform to albumin demonstrated using tryptophan fluorescence quenching. J Biol Chem 272:17961–17965CrossRefGoogle Scholar
  31. Jonsson M, Skepo M, Tjerneld F et al (2003) Effect of spatially distributed hydrophobic surface residues on protein-polymer association. J Phys Chem B 107:5511–5518CrossRefGoogle Scholar
  32. Jung Se H, Choi SJ, Kim HJ et al (2006) Molecular characteristics of bovine serum albumin-dextran conjugates. Biosci Biotechnol Biochem 70:2064–2070CrossRefGoogle Scholar
  33. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic Publishers, DordrechtGoogle Scholar
  34. Lakowicz JR, Kusba J, Shen Y et al (2003) Effect on metallic silver particles on resonance energy transfer between fluorophores bound to DNA. J Fluoresc 13:69–77CrossRefGoogle Scholar
  35. Li Y, Leung P, Yao L et al (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63CrossRefGoogle Scholar
  36. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Internat Rev Phys Chem 19:409–453CrossRefGoogle Scholar
  37. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077CrossRefGoogle Scholar
  38. Linse P (2009) MOLSIM ver. 4.13, Lund University, SwedenGoogle Scholar
  39. Liu R, Sun F, Zang L et al (2009) Evaluation on the toxicity of nanoAg to bovine serum albumin. Sci Total Environ 407:4184–4188CrossRefGoogle Scholar
  40. Lund M, Jönsson B (2003) A mesoscopic model for protein–protein interactions in solution. Biophys J 85:2940–2947CrossRefGoogle Scholar
  41. Mariam J, Dongre PM, Kothari DC (2011) Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J Fluoresc 21:2193–2199Google Scholar
  42. Moreno F, Cortijo M, Jimenez JG (1999) Interaction of acrylodan with human serum albumin. A fluorescence spectroscopic study. Photochem Photobiol 70:695–700CrossRefGoogle Scholar
  43. Moriyama Y, Watanabe E, Kobayashi K et al (2008) Secondary Structural Change Of Bovine Serum Albumin In Thermal Denaturation up to 130 °C and protective effect of sodium dodecyl sulfate on the change. J Phys Chem B 112:16585–16589CrossRefGoogle Scholar
  44. Naja G, Bouvrette P, Champagne J et al (2010) Activation of nanoparticles by biosorption for E. coli detection in milk and apple juice. Appl Biochem Biotechnol 162:460–475CrossRefGoogle Scholar
  45. Niemeyer CM (2001) Nanoparticles, proteins and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158CrossRefGoogle Scholar
  46. O’Neal DP, Hirsch LR, Halas NJ et al (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176CrossRefGoogle Scholar
  47. Olson RE, Christ DD (1996) Plasma protein binding of drugs. Ann Rep Med Chem 31:327–336CrossRefGoogle Scholar
  48. Ravindran A, Singh A, Raichur AM et al (2010) Studies on interaction of colloidal Ag nanoparticles with bovine serum albumin (BSA). Colloids Surf B 76:32–37CrossRefGoogle Scholar
  49. Reinhard B, Sheikholeslami S, Mastroianni A et al (2007) Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single ecorv restriction enzymes. Proc Natl Acad Sci USA 104:2667–2672CrossRefGoogle Scholar
  50. Rezaei-Tavirani M, Moghaddamnia SH, Ranjbar B et al (2006) Conformational study of human serum albumin in pre-denaturation temperatures by differential scanning calorimetry, circular dichroism and UV spectroscopy. J Biochem Mol Biol 39:530–536CrossRefGoogle Scholar
  51. Roach P, Farrar D, Perry C (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945CrossRefGoogle Scholar
  52. Rolinski OJ, Martin A, Birch DJS (2008) Human serum albumin-flavonoid interactions monitored by means of tryptophan kinetics. Ann NY Acad Sci 1130:314–319CrossRefGoogle Scholar
  53. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  54. Samoshima Y, Nylander T, Shubin V et al (2005) Equilibrium aspects of polycation adsorption on silica surface: how the adsorbed layer responds to changes in bulk solution. Langmuir 21:5872–5881CrossRefGoogle Scholar
  55. Shaikh SMT, Seetharamappa J, Kandagal PB et al (2007) Spectroscopic investigations on the mechanism of interaction of bioactive dye with bovine serum albumin. Dye Pigm 74:665–671CrossRefGoogle Scholar
  56. Shrivastava S, Bera T, Singh SK et al (2009) Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3(6):1357–1364CrossRefGoogle Scholar
  57. Skepo M, Linse P, Arnebrant T (2006) Coarse-grained modeling of proline rick protein 1 (PRP-1) in bulk solution and adsorbed to a negatively charged surface. J Phys Chem B 110:12141–12148CrossRefGoogle Scholar
  58. Sokolov K, Follen M, Aaron J et al (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004Google Scholar
  59. Sönnichsen C, Reinhard BM, Liphardt J et al (2005) Molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745CrossRefGoogle Scholar
  60. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12(6):1052–1061Google Scholar
  61. Templeton AC, Hostetler MJ, Kraft CT et al (1998) Reactivity of monolayer-protected gold cluster molecules: steric effects. J Am Chem Soc 120:1906–1911CrossRefGoogle Scholar
  62. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36CrossRefGoogle Scholar
  63. Tian J, Wong K, Ho C et al (2007) Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136Google Scholar
  64. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struc Biol 15:144–150CrossRefGoogle Scholar
  65. Ulman A (1991) Ultrathin organic films, 1st edn. Academic Press, San DiegoGoogle Scholar
  66. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:15331554CrossRefGoogle Scholar
  67. Valanciunaite J, Bagdonas S, Streckyte G et al (2006) Spectroscopic study of TPPS4 nanostructures in the presence of bovine serum albumin. Photochem Photobiol Sci 5:381–388CrossRefGoogle Scholar
  68. Voicescu M, Heinrich M, Hellwig P (2009a) Steady-state and time resolved fluorescence analysis of tyrosine–histidine model compounds. J Fluoresc 19:257–266CrossRefGoogle Scholar
  69. Voicescu M, El Khoury Y, Martel D et al (2009b) Spectroscopic analysis of tyrosine derivatives: on the role of the tyrosine–histidine covalent linkage in cytochrome c oxidase. J Phys Chem B 113:13429–13436CrossRefGoogle Scholar
  70. Wang H, Xu K, Liu L et al (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 31:2874–2881CrossRefGoogle Scholar
  71. Willner L, Baron R, Willner B (2007) Integrated nanoparticles-biomolecule systems for biosensing and bioelectronics. Biosens Bioelectron 22:1841–1852CrossRefGoogle Scholar
  72. Zhao X, Liu R, Teng Y et al (2011) The interaction between Ag+ and bovine serum albumin: a spectroscopic investigation. Sci Total Environ 409:892–897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mariana Voicescu
    • 1
    Email author
  • Sorana Ionescu
    • 2
  • Daniel G. Angelescu
    • 1
  1. 1.Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian AcademyBucharestRomania
  2. 2.Department of Physical ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations