Sensing behavior study of silica-coated Ag nanoparticles deposited on glassy carbon toward nitrobenzene

  • Pooja Devi
  • Pramod Reddy
  • Swati Arora
  • Suman Singh
  • C. Ghanshyam
  • M. L. SinglaEmail author
Research Paper


In this study, we report the synthesis and characterization of silica-coated silver core/shell nanostructures (NSs) and their sensing behavior when deposited on glassy carbon (GC) electrode for nitrobenzene (NB) detection. Synthesized silica-coated silver core/shell NSs were characterized for their chemical, structural and morphological properties. TEM analysis confirmed that the silica-coated silver nanoparticles (size ~200 nm) are spherical in shape and the core diameter is ~38 nm. FT-IR spectra also confirmed the coating of silica on the surface of silver nanoparticles. Cyclic voltammetry studies of NB with silica-coated silver core–shell nanoparticles-modified GC electrodes revealed two cathodic peaks at −0.74 V (C1) and −0.34 V (C2) along with two anodic peaks at −0.64 V (A1) and −0.2 V (A2). Enhanced cathodic peak current (C 1, I P) of the core–shell NSs-modified electrode is observed relative to bare and silica-modified electrodes. Amperometric studies revealed a very high current sensitivity (114 nA/nM) and linearly dependent reduction current with NB amount in the low concentration range and a detection limit of 25 nM. Moreover, the core–shell NSs-modified electrode showed good reproducibility and selectivity toward NB in the presence of many cationic, anionic, and organic interferents.


Core/shell nanostructures Modified electrode Electrochemical sensor Nitrobenzene 



The authors are thankful to Dr. Pawan Kapur, Director, CSIO-CSIR, for his valuable support.

Supplementary material

11051_2012_1172_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1633 kb)


  1. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Gulf Professional Publishing, San DiegoGoogle Scholar
  2. Chen JC, Chung HH, Hsu CT, Tsai DM, Kumar AS, Zen JM (2005) A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sens Actuators B Chem 110(2):364–369Google Scholar
  3. Chen J-C, Shih J-L, Liu C-H, Kuo M-Y, Zen J-M (2006) Disposable electrochemical sensor for determination of nitroaromatic compounds by a single-run approach. Anal Chem 78(11):3752–3757Google Scholar
  4. Davies L (2003) WHO task group on environmental health criteria for nitrobenzene. World Health Organization, GenevaGoogle Scholar
  5. Finkel AJ (1983). Herbicides: dinitrophenols. In: Hamilton and Hardy’s industrial toxicology, 4th edn. John Wright PSG, BostonGoogle Scholar
  6. Galeano-Diaz T, Guiberteau-Cabanillas A et al (2000) Rapid and sensitive determination of 4-nitrophenol, 3-methyl-4-nitrophenol, 4,6-dinitro-o-cresol, parathion-methyl, fenitrothion, and parathion-ethyl by liquid chromatography with electrochemical detection. J Agric Food Chem 48(10):4508–4513CrossRefGoogle Scholar
  7. Grirrane A, Corma A et al (2008) Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 322(5908):1661–1664CrossRefGoogle Scholar
  8. Guo X, Wang Z et al (2004) The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 64(1):135–139CrossRefGoogle Scholar
  9. Hartter DR (1985) Toxicity of nitroaromatic compounds. In: Rickert DE (ed) Hemisphere, Washington, DCGoogle Scholar
  10. Joo SH, Park JY et al (2009) Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater 8(2):126–131CrossRefGoogle Scholar
  11. Kalele S, Gosavi SW et al (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91:8Google Scholar
  12. Kirk CT (1988) Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys Rev B 38(2):1255CrossRefGoogle Scholar
  13. Kobayashi Y, Katakami H et al (2005) Silica coating of silver nanoparticles using a modified Stöber method. J Colloid Interface Sci 283(2):392–396CrossRefGoogle Scholar
  14. Leftwich RB, Neal RA FJ et al (1982) Dinitrophenol poisoning: a diagnosis to consider in undiagnosed fever. South Med J 75:182–185CrossRefGoogle Scholar
  15. Li H, Ha C-S et al (2010) Fabrication of optically tunable silica nanocapsules containing Ag/Au nanostructures by confined galvanic replacement reaction. J Nanopart Res 12(3):985–992CrossRefGoogle Scholar
  16. Liu C, Cao H, Li Y, Zhang Y (2006) Gold nanoparticles/multi-wall carbon nanotubes modified pyrolytic graphite electrode as an electrochemical sensor for nitrobenzene determination. J New Mater Electrochem Syst 9(2):139–144Google Scholar
  17. Liz-Marzán LM, Giersig M et al (1996) Synthesis of nanosized gold–silica core–shell particles. Langmuir 12(18):4329–4335CrossRefGoogle Scholar
  18. Lorenzo E, Alda E et al (1988) Voltammetric determination of nitrobenzene with a chemically modified carbon paste electrode. Application to wines, beers and cider. Fresenius’ J Anal Chem 330(2):139–142CrossRefGoogle Scholar
  19. Luo L, Wang X et al (2010) Electrochemical determination of nitrobenzene using bismuth-film modified carbon paste electrode in the presence of cetyltrimethylammonium bromide. Anal Methods 2(8):1095–1100CrossRefGoogle Scholar
  20. Ma J, Zhang Y et al (2011) Sensitive electrochemical detection of nitrobenzene based on macro-/meso-porous carbon materials modified glassy carbon electrode. Talanta 88:696–700CrossRefGoogle Scholar
  21. Maduraiveeran G, Ramaraj R (2009) Potential sensing platform of silver nanoparticles embedded in functionalized silicate shell for nitroaromatic compounds. Anal Chem 81(18):7552–7560Google Scholar
  22. Patra A, Sominska E et al (1999) Sonochemical preparation and characterization of Eu2O3 and Tb2O3 doped in and coated on silica and alumina nanoparticles. J Phys Chem B 103(17):3361–3365CrossRefGoogle Scholar
  23. Qi B, Lin F et al (2008) An ordered mesoporous carbon/didodecyldimethylammonium bromide composite and its application in the electro-catalytic reduction of nitrobenzene. Mater Lett 62:3670–3672CrossRefGoogle Scholar
  24. Qian H, Ye J, Jin L (1997) Study of the electrochemical properties of C60 modified carbon paste electrode and its application for nitrobenzene quantitation based on electrocatalytic reduction. Anal Lett 30:367–381Google Scholar
  25. Rosenblatt DH, Burrows EP et al (1991) The handbook of environmental chemistry anthropogenic compounds. Springer, BerlinGoogle Scholar
  26. Sanchez-Pedreno JAO, Drew PKP et al (1986) The investigation of coating materials for the detection of nitrobenzene with coated quartz piezoelectric crystals. Anal Chim Acta 182:285–291CrossRefGoogle Scholar
  27. Smitha SL, Nissamudeen KM et al (2008) Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim Acta A 71(1):186–190CrossRefGoogle Scholar
  28. Stöber W, Fink A et al (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  29. Sun B, Chiu DT (2004) Synthesis, loading, and application of individual nanocapsules for probing single-cell signaling. Langmuir 20(11):4614–4620CrossRefGoogle Scholar
  30. Takahashi S, Nagamura F et al (2009) Gas chromatography with surface ionization detection of nitro pesticides. Chem Pap 63(5):613–616CrossRefGoogle Scholar
  31. Thompson MJ, Ballinger LN et al (1996) High-performance liquid chromatographic determination of phenol, 4-nitrophenol, [beta]-naphthol and a number of their glucuronide and sulphate conjugates in organ perfusate. J Chromatogr B Biomed Sci Appl 677(1):117–122CrossRefGoogle Scholar
  32. Turner M, Golovko VB et al (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207):981–983CrossRefGoogle Scholar
  33. Wang H, Qiao X et al (2005) Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys 94(2–3):449–453CrossRefGoogle Scholar
  34. Weissmahr KW, Haderlein SB et al (1996) In situ spectroscopic investigations of adsorption mechanisms of nitroaromatic compounds at clay minerals. Environ Sci Technol 31(1):240–247CrossRefGoogle Scholar
  35. Won Y-H, Aboagye D et al (2010) Core/shell nanoparticles as hybrid platforms for the fabrication of a hydrogen peroxide biosensor. J Mater Chem 20(24):5030–5034CrossRefGoogle Scholar
  36. Yang X, Shen G-L et al (2001) A fiber optode for p-nitrophenol based on covalently bound 9-allylaminoacridine. Microchim Acta 136(1):73–78CrossRefGoogle Scholar
  37. Zhang H-X, Cao A-M et al (2006) Electrochemical sensor for detecting ultratrace nitroaromatic compounds using mesoporous SiO2-modified electrode. Anal Chem 78(6):1967–1971CrossRefGoogle Scholar
  38. Zhang H-k, Liang S-k et al (2007) Determination of nitrobenzene by differential pulse voltammetry and its application in wastewater analysis. Anal Bioanal Chem 387(4):1511–1516CrossRefGoogle Scholar
  39. Zhu H, Ke X et al (2010) Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. Angewandte Chemie Int Edn 49(50):9657–9661CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Pooja Devi
    • 1
  • Pramod Reddy
    • 1
  • Swati Arora
    • 2
  • Suman Singh
    • 1
  • C. Ghanshyam
    • 1
  • M. L. Singla
    • 1
    Email author
  1. 1.Central Scientific Instruments OrganizationCSIR, Sector-30CChandigarhIndia
  2. 2.Shri Mata Vaishno Devi UniversityKatraIndia

Personalised recommendations