Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption

  • Ivan M. Dugandžić
  • Dragana J. Jovanović
  • Lidija T. Mančić
  • Nan Zheng
  • Scott P. Ahrenkiel
  • Olivera B. Milošević
  • Zoran V. Šaponjić
  • Jovan M. Nedeljković
Research Paper

Abstract

Spherical, submicronic TiO2 assemblage with high specific surface area and controllable phase composition was prepared in the process of ultrasonic spray drying/pyrolysis in a wide temperature range (150–800 °C) by using as a precursor aqueous colloidal solution consisting of TiO2 nanoparticles (4.5 nm). Submicronic, soft and grained spherical TiO2 particles (d = 370–500 nm) comprising clustered nanocrystals (<10 nm) were obtained at low processing temperature, while particle densification, intensive growth of the clustered primary units and anatase-to-rutile transformation (~30 wt%) were observed at the higher temperatures. Detailed structural and morphological characterisation were performed by X-ray powder diffraction, scanning and field emission electron microscopy, transmission electron microscopy, and laser particle size analysis. Moreover, the surface modification of TiO2 particles through the formation of charge-transfer (CT) complex was achieved with different ligands: ascorbic acid, dopamine, catechol, 2,3-dihydroxynaphthalene, and anthrarobin. Optical properties of the surface-modified TiO2 particles were studied by using diffuse reflection spectroscopy. The binding structure between the surface titanium atoms and different ligands was determined by using Fourier transform infrared spectroscopy. The formation of CT complexes induced significant red shift of optical absorption in comparison to unmodified TiO2 particles.

Keywords

TiO2 nanoparticles Spray drying/pyrolysis Surface modification Charge-transfer complex Optical properties 

Supplementary material

11051_2012_1157_MOESM1_ESM.doc (2.8 mb)
Supplementary material 1 (DOC 2918 kb)

References

  1. Araujo PZ, Mendive CB, Garcia Rodenas LA, Morando PJ, Regazzoni AE, Blesa MA, Bahnemann D (2005a) FT-IR–ATR as a tool to probe photocatalytic interfaces. Colloid Surf A 265:73–80CrossRefGoogle Scholar
  2. Araujo PZ, Morando PJ, Blesa MA (2005b) Interaction of catechol and gallic acid with titanium dioxide in aqueous suspensions. 1. Equilibrium studies. Langmuir 21:3470–3474CrossRefGoogle Scholar
  3. Boissiere C, Grosso D, Chaumonnot A, Nicole L, Sanchez C (2011) Aerosol route to functional nanostructured inorganic and hybrid porous materials. Adv Mater 23:599–623CrossRefGoogle Scholar
  4. Chen LX, Rajh T, Jager W, Nedeljkovic J, Thurnauer MC (1999) X-ray absorption reveals surface structure of titanium dioxide nanoparticles. J Synchrotron Radiat 6:445–447CrossRefGoogle Scholar
  5. Coelho AA (2004) TOPAS-AcademicGoogle Scholar
  6. Connor PA, Dobson KD, McQuillan AJ (1995) New sol–gel attenuated total reflection infrared spectroscopic method for analysis of adsorption at metal oxide surfaces in aqueous solutions. Chelation of TiO2, ZrO2, and Al2O3 surfaces by catechol, 8-quinolinol, and acetylacetone. Langmuir 11:4193–4195CrossRefGoogle Scholar
  7. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229CrossRefGoogle Scholar
  8. Dimitrijevic NM, Rozhkova E, Rajh T (2009) Dynamics of localized charges in dopamine-modified TiO2 and their effect on the formation of reactive oxygen species. J Am Chem Soc 131:2893–2899CrossRefGoogle Scholar
  9. Duncan WR, Prezhdo OV (2007) Theoretical studies of photoinduced electron transfer in dye-densitized TiO2. Annu Rev Phys Chem 58:143–184CrossRefGoogle Scholar
  10. Garza L, Saponjic ZV, Dimitrijevic NM, Thurnauer MC, Rajh T (2006) Surface states of titanium dioxide nanoparticles modified with enediol ligands. J Phys Chem B 110:680–686CrossRefGoogle Scholar
  11. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C 4:145–153CrossRefGoogle Scholar
  12. Grätzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798CrossRefGoogle Scholar
  13. Hashimoto K, Irie H, Fujishima A (2005) TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 44:8269–8285CrossRefGoogle Scholar
  14. Hines ED, Boltz F (1952) Spectrophotometric determination of titanium with ascorbic acid. Anal Chem 24:947–948CrossRefGoogle Scholar
  15. Hultquist AE (1964) Spectrophotometric determination of titanium using salicylic scid in H2SO4 medium. Anal Chem 36:149–151CrossRefGoogle Scholar
  16. Ishiguro T, Tanaka K, Marumo F, Ismail MGMU, Somiya S (1978) Non-stoichiometric sodium iron(II) titanium(IV) oxide. Acta Crystallogr B 34:255–256CrossRefGoogle Scholar
  17. Janković IA, Saponjić ZV, Čomor MI, Nedeljković JM (2009) Surface modification of colloidal TiO2 nanoparticles with bidentate benzene derivatives. J Phys Chem C 113:12645–12652CrossRefGoogle Scholar
  18. Janković IA, Šaponjić ZV, Džunuzović ES, Nedeljković JM (2010) New hybrid properties of TiO2 nanoparticles surface modified with catecholate type ligands. Nanoscale Res Lett 5:81–88CrossRefGoogle Scholar
  19. Jeffery GH, Bassett J, Mendham J, Denney RC (1989) Vogel`s textbook of quantitative chemical analysis, 5th edn. Wiley, New York, p 696Google Scholar
  20. Kim TK, Lee MN, Lee SH, Park YC, Jung CK, Boo JH (2005) Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films 475:171–177CrossRefGoogle Scholar
  21. Lan Z, Wu J, Lin J, Huang M (2010) Preparation of sub-micron size anatase TiO2 particles for use as light-scattering centers in dye-sensitized solar cell. J Mater Sci Mater Electron 21:833–837CrossRefGoogle Scholar
  22. Lang RJ (1962) Ultrasonic atomization of liquids. J Acoust Soc Am 34:6–8CrossRefGoogle Scholar
  23. Lee JH, Jung KY, Park SB (1999) Modification of titania particles by ultrasonic spray pyrolysis of colloid. J Mater Sci 34:4089–4093CrossRefGoogle Scholar
  24. Li SX, Zheng FY, Cai WL, Han AQ, Xie YK (2006) Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol. J Hazard Mater 135:431–436CrossRefGoogle Scholar
  25. Liu TQ, Sakurai Q, Mizutani N, Kato M (1986) Preparation of spherical fine ZnO particles by the spray pyrolysis method using ultrasonic atomization technique. J Mater Sci 21:3698–3702CrossRefGoogle Scholar
  26. Liu Y, Dadap JI, Zimdars D, Eisenthal KB (1999) Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension bysecond-harmonic generation. J Phys Chem B 103:2480–2486CrossRefGoogle Scholar
  27. López-Muñoz MJ, Aguado J, Arencibia A, Pascual R (2011) Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2. Appl Catal B 104:220–228CrossRefGoogle Scholar
  28. Macyk W, Szaciłowski K, Stochel G, Buchalska M, Kuncewicz J, Labuz P (2010) Titanium(IV) complexes as direct TiO2 photosensitizers. Coord Chem Rev 254:2687–2701CrossRefGoogle Scholar
  29. Mihailović D, Šaponjić Z, Radoičić M, Radetić T, Jovančić P, Nedeljković J, Radetić M (2010) Functionalization of polyester fabrics with alginates and TiO2 nanoparticles. Carbohydr Polym 79:526–532CrossRefGoogle Scholar
  30. Milosevic O, Mancic L, Rabanal ME, Gomez LS, Marinkovic K (2009) Aerosol route in processing of nanostructured functional materials. KONA Powder Part J 27:84–106Google Scholar
  31. Morgadojr E, Deabreu M, Moure G, Marinkovic B, Jardim P, Araujo A (2007) Effects of thermal treatment of nanostructured trititanates on their crystallographic and textural properties. Mater Res Bull 42:1748–1760CrossRefGoogle Scholar
  32. Murphy AB (2007) Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol Energy Mater Sol Cells 91:1326–1337CrossRefGoogle Scholar
  33. Nedeljković JM, Saponjić ZV, Rakocević Z, Jokanović V, Uskokovic DP (1997) Ultrasonic spray pyrolysis of TiO2 nanoparticles. Nanostruct Mater 9:125–128CrossRefGoogle Scholar
  34. Okuyama K, Lenggoro IW (2003) Preparation of nanoparticles via spray route. Chem Eng Sci 58:537–547CrossRefGoogle Scholar
  35. Pan L, Zou JJ, Zhang X, Wang L (2011) Water-mediated promotion of dye sensitization of TiO2 under visible light. J Am Chem Soc 133:10000–10002CrossRefGoogle Scholar
  36. Persson P, Bergstrom R, Lunell S (2000) Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles. J Phys Chem B 104:10348–10351CrossRefGoogle Scholar
  37. Rajh T, Ostafin AE, Micic OI, Tiede DM, Thurnauer MC (1996) Surface modification of small particle TiO2 colloids with cysteine for enhanced photochemical reduction: an EPR study. J Phys Chem 100:4538–4545CrossRefGoogle Scholar
  38. Rajh T, Nedeljkovic JM, Chen LX, Poluektov O, Thurnauer MC (1999) Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C. J Phys Chem B 103:3515–3519CrossRefGoogle Scholar
  39. Rice CR, Ward MD, Nazeeruddin MK, Grätzel M (2000) Catechol as an efficient anchoring group for attachment of ruthenium polypyridine photosensitisers to solar cells based on nanocrystalline TiO2 films. New J Chem 24:651–652CrossRefGoogle Scholar
  40. Rothenberger G, Comte P, Gratzel M (1999) A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol Energy Mater Sol Cells 58:321–336CrossRefGoogle Scholar
  41. Saponjić ZV, Rakocević Z, Dimitrijević NM, Nedeljković JM, Jokanović V, Uskokovic DP (1998) Tailor made synthesis of Q-TiO2 powder by using quantum dots as building blocks. Nanostruct Mater 10:333–339CrossRefGoogle Scholar
  42. Sasaki T, Komatsu Y, Fujiki Y (1992) Protonated pentatitanate: preparation, characterizations and cation intercalation. Chem Mater 4:894–899CrossRefGoogle Scholar
  43. Savić T, Janković A, Saponjić Z, Comor M, Veljković D, Zarić S, Nedeljković J (2012) Surface modification of anatase nanoparticles with fused ring catecholate type ligands: a combined DFT and experimental study of optical properties. Nanoscale 4:1612–1619CrossRefGoogle Scholar
  44. Syres K, Thomas A, Bondino F, Malvestuto M, Graetzel M (2010) Dopamine adsorption on anatase TiO2 (101): a photoemission and NEXAFS spectroscopy study. Langmuir 26:14548–14555CrossRefGoogle Scholar
  45. Tae EL, Lee SH, Lee JK, Yoo SS, Kang EJ, Yoon KB (2005) A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. J Phys Chem B 109:22513–22522CrossRefGoogle Scholar
  46. Thompson RC (1984) Oxidation of peroxotitanium(IV) by chlorine and cerium(IV) in acidic perchlorate solution. Inorg Chem 23:1794–1798CrossRefGoogle Scholar
  47. Wang Y, Milosevic O, Gomez L, Rabanal ME, Torralba JM, Yang B, Townsend PD (2006) Thermoluminescence responses from europium doped gadolinium oxide. J Phys Condens Mater 18:9257–9272CrossRefGoogle Scholar
  48. Xagas AP, Bernard MC, Hugot-Le GA, Spyrellis N, Loizos Z, Falaras P (2000) Surface modification and photosensitisation of TiO2 nanocrystalline films with ascorbic acid. J Photochem Photobiol A 132:115–120CrossRefGoogle Scholar
  49. Ye Q, Zhou F, Liu W (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ivan M. Dugandžić
    • 1
  • Dragana J. Jovanović
    • 2
  • Lidija T. Mančić
    • 1
  • Nan Zheng
    • 3
  • Scott P. Ahrenkiel
    • 3
  • Olivera B. Milošević
    • 1
  • Zoran V. Šaponjić
    • 2
  • Jovan M. Nedeljković
    • 2
  1. 1.Institute of Technical Sciences of SASABelgradeSerbia
  2. 2.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  3. 3.South Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations