Structural and electrical characterization of bamboo-shaped C–N nanotubes–poly ethylene oxide (PEO) composite films

  • Ram Manohar YadavEmail author
  • Pramod S. Dobal
Research Paper


We have prepared bamboo-shaped C–N nanotubes–polyethylene oxide (PEO) composite films by solution cast technique and investigated their structural/microstructural and electrical properties and developed a correlation between them. The formation of clean compartmentalized bamboo-shaped C–N nanotubes was confirmed by TEM. SEM investigations revealed a homogeneous dispersion of nanotubes in PEO matrix. Enhanced electrical conductivity was observed for the C–N nanotubes–PEO composites than bare PEO. The conductivity measurements on the C–N nanotubes–PEO composite films with ~20 wt % concentration of C–N nanotubes showed an increase of eight orders (~7.5 × 10−8 to 6.2 S cm−1) of magnitude in conductivity from bare PEO film. Raman spectra showed the stress-free nature of the composites and established the bonding of nanotubes with PEO, which resulted in the variation of Raman parameters. The Raman data of composites corroborate the findings of variation in electrical conductivity.


Carbon–Nitrogen(C–N) nanotubes Bamboo-shaped Composite films 



The authors are extremely grateful to Prof R S Katiyar, University of Puerto Rico (USA), and Prof. O.N.Srivastava, BHU Varanasi for their encouragement and kind support and Dr Kalpana Awasthi for the helpful discussions.


  1. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned Carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1214CrossRefGoogle Scholar
  2. Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753CrossRefGoogle Scholar
  3. Ajayan PM, Braun PV, Schadler LS (2003) Nanocomposite science and technology. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. Akhtar MS, Park JG, Lee HC, Lee SK, Yang OB (2010) Carbon nanotubes–polyethylene oxide composite electrolyte for solid-state dye-sensitized solar cells. Electrochim Acta 55(7):2418–2423CrossRefGoogle Scholar
  5. Ali SR, Ma Y, Parajuli RR, Balogun Y, Lai WYC, He H (2007) A nonoxidative sensor based on a self-doped polyaniline/Carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587CrossRefGoogle Scholar
  6. Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) Nucliation ability of multiwalled carbon nanotubes in polypropylene composites. J Polym Sci Polym Phys Ed 41:520–527CrossRefGoogle Scholar
  7. Awasthi K, Awasthi S, Srivastava A, Kamalakaran R, Talapatra S, Ajayan PM, Srivastava ON (2006) Synthesis and characterization of carbon nanotube–polyethylene oxide composites. Nanotechnology 17:5417–5422CrossRefGoogle Scholar
  8. Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A Appl Sci Manufact 34(8):689–694CrossRefGoogle Scholar
  9. Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of Carbon nanotubes-polyepoxy composites. Macromolecules 36:5187–5194CrossRefGoogle Scholar
  10. Barrau S, Demont P, Maraval C, Bernes A, Lacabanne C (2005) Glass transition temperature depression at the percolation threshold in carbon nanotube–epoxy resin and polypyrrole–epoxy resin composites. Macromol Rapid Comm 26(5):390–394CrossRefGoogle Scholar
  11. Chakraborty G, Gupta K, Meikap AK, Babu R, Blau WJ (2011) Anomalous electrical transport properties of polyvinyl alcohol-multiwall carbon nanotubes composites below room temperature. J Appl Phys 109:033707–033709CrossRefGoogle Scholar
  12. Chakraborty G, Gupta K, Rana D, Meikap AK (2012) Effect of multiwalled carbon nanotubes on electrical conductivity and magnetoconductivity of polyaniline. Adv Natl Sci Nanosci Nanotechnol 3:035015 (8 pp)Google Scholar
  13. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17(21):5255–5262CrossRefGoogle Scholar
  14. Curran SA, Ajayan PM, Blau WJ, Carroll DL, Coleman JN, Dalton AB, Davey AP, Drury A, McCarthy B, Maier S, Strevens A (1998) A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: a novel material for molecular optoelectronics. Adv Mater 10:1091–1093CrossRefGoogle Scholar
  15. Datsyuk V, Piecourt CG, Dagreou S, Billon L, Dupin JC, Flahaut E, Peigney A, Laurent C (2005) Double walled carbon nanotube/polymer composites via in situ nitroxide mediated polymerisation of amphiphilic block copolymers. Carbon 43:873–876CrossRefGoogle Scholar
  16. Dresselhaus MS, Pimenta MA, Eklund PC, Dresselhaus G (2000) Raman scattering in fullerenes and related carbon-based material. In: Weber WH, Merlin R (eds) Raman scattering in material sciences, Springer Series in Materials Science. Springer, Berlin, vol 42, pp 314–364Google Scholar
  17. Dresselhaus MS, Dresselhaus G, Jorio A, Filho AGS, Saito R (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon 40:2043–2061CrossRefGoogle Scholar
  18. Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020CrossRefGoogle Scholar
  19. Du F, Fischer JE, Winey KI (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72:121404 RGoogle Scholar
  20. Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761CrossRefGoogle Scholar
  21. Haggenmuller R, Gonmas HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225CrossRefGoogle Scholar
  22. Hou HQ, Ge JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 17:967–973CrossRefGoogle Scholar
  23. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  24. Israelachvili JN (2006) Intermolecular surface forces. Academic Press, San Diego, 3rd ednGoogle Scholar
  25. Jia Z, Wang ZY, Xu CL, Liang J, Wei BQ, Wu DH, Zhu SW (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng, A 271:395–400CrossRefGoogle Scholar
  26. Jin Z, Pramoda KP, Xu G, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem Phys Lett 337:43–47CrossRefGoogle Scholar
  27. Jorio A, Vasconcelos D, Filho AGS, Dresselhaus G, Dresselhaus MS, Swan AK, Ünlü MS, Goldberg BB, Pimenta MA, Hafner JH, Lieber CM, Saito R (2001) G-band Raman spectra of isolated single wall carbon nanotubes diameter and chirality dependence. Mater Res Soc Proc Fall 706:187–192Google Scholar
  28. Ko F, Gogotsi Y, Ali A, Naguib N, Ye HH, Yang GL, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161–1165CrossRefGoogle Scholar
  29. Kovtyukhova NI, Mallouk TE (2005) Ultrathin anisotropic films assembled from individual single-walled Carbon nanotubes and amine polymers. J Phys Chem B 109:2540–2545CrossRefGoogle Scholar
  30. Kymakis E, Amaratunga GAJ (2002) Single-wall Carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett 80:112–114CrossRefGoogle Scholar
  31. Kymakis E, Alexandou I, Amaratunga GAJ (2002) Single-walled carbon nanotube-polymer composites: electrical optical and structural investigation. Synth Met 127:59–62CrossRefGoogle Scholar
  32. Li Y, Zhang B, Tao XY, Xu JM, Huang WZ, Luo JH, Li T, Bao Y, Geise HJ (2005) Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43:295–301CrossRefGoogle Scholar
  33. Li CY, Thostenson ET, Chou TW (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68:1445–1452CrossRefGoogle Scholar
  34. Liao K, Li S (2001) Interfacial characteristics of carbon nanotube-polystyrene composite system. Appl Phys Lett 79:4225–4227CrossRefGoogle Scholar
  35. Liu L, Qin Y, Guo ZX, Zhu D (2003) Eduction of solubilized multi-walled carbon nanotubes. Carbon 41:331–335CrossRefGoogle Scholar
  36. Liu TX, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222CrossRefGoogle Scholar
  37. Lorenzo LMR, Saldaña L, Garzón LB, Carrodeguas RG, Aza SD, Vilaboa N, Román JS (2012) Feasibility of ceramic–polymer composite cryogels as scaffolds for bone tissue engineering. J Tissue Eng Regenerat Med 6(6):421–433CrossRefGoogle Scholar
  38. Mathur A, Roy SS, Tweedie M, Maguire PD, Mclaughlin JA (2009) Electrical and Raman spectroscopic studies of vertically aligned multi-walled carbon nanotubes. J Nanosci Nanotechnol 9:4392–4396CrossRefGoogle Scholar
  39. Mdarhri A, Carmona F, Brosseau C, Delhaes P (2008) Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites. J Appl Phys 103:054303–054309CrossRefGoogle Scholar
  40. Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized Carbon nanotubes in polystyrene. Macromolecules 35:8825–8830CrossRefGoogle Scholar
  41. Mott NF, Davis E (1979) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  42. Obare SO, Jana NR, Murphy CJ (2001) Preparation of polystyrene and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes. Nano Lett 1:601–603CrossRefGoogle Scholar
  43. Park SJ, Cho MS, Lim ST, Cho HJ, Jhon MS (2003) Synthesis and dispersion characteristics of multi-walled Carbon nanotube composites with poly(methyl methacrylate) prepared by in situ bulk polymerization macromol. Rapid Commun. 24:1070–1073CrossRefGoogle Scholar
  44. Peigney A (2003) Composite materials: tougher ceramics with nanotubes. Nat Mater 2:15–16CrossRefGoogle Scholar
  45. Pradhan B, Setyowati K, Liu H, Waldeck DH, Chen J (2008) Carbon nanotube-polymer nanocomposite infrared sensor. Nano Lett 8(4):1142–1146CrossRefGoogle Scholar
  46. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870CrossRefGoogle Scholar
  47. Ruan B, Jacobi AM (2012) Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett 7(1):127CrossRefGoogle Scholar
  48. Sandler J, Shaffer MSP, Prasse T, Bauhofer W, Schulte K, Windle AH (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40:5967–5971CrossRefGoogle Scholar
  49. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4:459–464CrossRefGoogle Scholar
  50. Sheng P (1980) Fluctuation-induced tunneling conduction in disordered materials. Phys Rev B 21:2180–2195CrossRefGoogle Scholar
  51. Sheng P, Sichel EK, Gittleman JL (1978) Fluctuation-induced tunnelling conduction in carbon-polyvinylchloride composites. Phys Rev Lett 40:1197–1200CrossRefGoogle Scholar
  52. Singh I, Verma A, Kaur I, Bharadwaj LM, Bhatia V, Jain VK, Bhatia CS, Bhatnagar PK, Mathur PC (2010) The effect of length of single-walled carbon nanotubes (SWNTs) on electrical properties of conducting polymer–SWNT composites. J Polym Sci B Polym Phys 48(1):89–95CrossRefGoogle Scholar
  53. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  54. Suhr J, Koratkar N, Keblinski P, Ajayan PM (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134–137CrossRefGoogle Scholar
  55. Tan P, An L, Liu L, Guo Z, Czerw R, Carroll DL, Ajayan PM, Zhang N, Guo H (2002) Probing the phonon dispersion relations of graphite from the double-resonance process of Stokes and anti-Stokes Raman scatterings in multiwalled carbon nanotubes. Phys Rev B 66:245410–245418CrossRefGoogle Scholar
  56. Tiwari R, Garcia E (2011) The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater Struct 20:083001CrossRefGoogle Scholar
  57. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130CrossRefGoogle Scholar
  58. Valentini L, Biagiotti J, Kenny JM, Santucci SJ (2003) Effects of single-walled carbon nanotubes on the crystallization behavior of polypropylene. J Appl Polym Sci 87:708–713CrossRefGoogle Scholar
  59. Xia HS, Song M (2005) Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter 1:386–394CrossRefGoogle Scholar
  60. Xia HS, Wang Q, Li KS, Hu GJ (2004) Preparation of polypropylene/carbon nanotube composite powder with a solid-state mechanochemical pulverization process. J Appl Polym Sci 93:378–386CrossRefGoogle Scholar
  61. Xu XJ, Thwe MM, Shearwood C, Liao K (2002) Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl Phys Lett 81:2833CrossRefGoogle Scholar
  62. Yadav RM, Srivastava A, Srivastava ON (2004) Synthesis of bamboo-shaped carbon-nitrogen nanotubes using acetonitrile-ferrocene precursor. J Nanosci Nanotech 4(7):719–721CrossRefGoogle Scholar
  63. Yadav RM, Sripathi T, Srivastava A, Srivastava ON (2005) Effect of ferrocene concentration on the synthesis of bamboo-shaped carbon–nitrogen nanotube bundles. J Nanosci Nanotechnol 5:820–824CrossRefGoogle Scholar
  64. Yadav RM, Singh DP, Sripathi T, Srivastava ON (2008) Synthesis of C–N nanotube blocks and Y-junctions in bamboo-like C–N nanotubes. J Nanopart Res 10:1349–1354CrossRefGoogle Scholar
  65. Yadav RM, Awasthi K, Srivastava ON (2011) Preparation of carbon-nitrogen nanotubes- poly ethylene oxide composites films and their electrical conductivity measurement. Int J Nanosci 10(4):1091–1094CrossRefGoogle Scholar
  66. Yang Y, Grulke EA, Zhang ZG, Wu G (2006) Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys 99:114307CrossRefGoogle Scholar
  67. Yoshino K, Kajii H, Araki H, Sonoda T, Take H, Lee S (1999) Electrical and optical properties of conducting polymer-fullerene and conducting polymer-carbon nanotube composites. Fuller Sci Technol 7:695–711CrossRefGoogle Scholar
  68. Zhang WD, Shen L, Phang IY, Liu TX (2004) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecules 37:256–259CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhysicsVSSD CollegeKanpurIndia

Personalised recommendations