In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects

  • Jérémie Pourchez
  • Valérie Forest
  • Najih Boumahdi
  • Delphine Boudard
  • Maura Tomatis
  • Bice Fubini
  • Nathalie Herlin-Boime
  • Yann Leconte
  • Bernard Guilhot
  • Michèle Cottier
  • Philippe Grosseau
Research Paper

Abstract

Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol–gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-α production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases (α-SiC vs. β-SiC) on the TNF-α production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H2O2 production.

Keywords

Silicon carbide nanoparticles Laser pyrolysis Sol–gel Biological activity Toxicity Macrophage cell line 

References

  1. Akhtar MJ, Kumar S, Murthy RC et al (2010) The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid. Toxicol In Vitro 24(4):1139–1147CrossRefGoogle Scholar
  2. Akiyama I, Ogami A, Oyabu T et al (2007) Pulmonary effects and biopersistence of deposited silicon carbide whisker after 1-year inhalation in rats. Inhalation Toxicol 19(2):141–147CrossRefGoogle Scholar
  3. Ball BR, Smith KR, Veranth JM et al (2002) Bioavailability of iron from coal fly ash: mechanisms of mobilization and of biological effects. Inhalation Toxicol 12(4):209–225Google Scholar
  4. Barillet S, Jugan M, Laye M et al (2010a) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: cyto-, genotoxicity and oxidative stress. Toxicol Lett 198(3):324–330CrossRefGoogle Scholar
  5. Barillet S, Simon-Deckers A, Herlin-Boime N et al (2010b) Toxicological consequences of TiO(2), SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res 12(1):61–73CrossRefGoogle Scholar
  6. Botsoa J, Lysenko V, Geloen A et al (2008) Application of 3C-SiC quantum dots for living cell imaging. Appl Phys Lett 92(17):173902–173903CrossRefGoogle Scholar
  7. Bruch J, Rehn B, Song H et al (1993a) Toxicological investigations on silicon-carbide. 1 inhalation studies. Br J Ind Med 50(9):797–806Google Scholar
  8. Bruch J, Rehn B, Song H et al (1993b) Toxicological investigations on silicon-carbide. 2 in vitro cell tests and long-term injection tests. Br J Ind Med 50(9):807–813Google Scholar
  9. Bruch J, Rehn S, Rehn B et al (2004) Variation of biological responses to different respirable quartz flours determined by a vector model. Int J Hyg Environ Heal 207:203–216CrossRefGoogle Scholar
  10. Cauchetier M, Croix O, Luce M (1988) Laser synthesis of silicon carbide powders from silane and hydroxycarbon mixtures. Adv Ceram Mater 3:548–552Google Scholar
  11. Colder H, Rizk R, Morales M et al (2005) Influence of substrate temperature on growth of nanocrystalline silicon. J Appl Phys 98:024313CrossRefGoogle Scholar
  12. Cullen RT, Miller BG, Davis JMG et al (1997) Short-term inhalation and in vitro tests as predictors of fiber pathogenicity. Environ Health Perspect 105(5):1235–1240CrossRefGoogle Scholar
  13. De la Harpe J, Nathan CF (1985) A semi-automated micro-assay for H2O2 release by human-blood monocytes and mouse peritoneal-macrophages. J Immunol Methods 78(2):323–336CrossRefGoogle Scholar
  14. Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6(9):688–701CrossRefGoogle Scholar
  15. Fan J, Li H, Jiang J et al (2008) 3C-SiC nanocrystals as fluorescent biological labels. Small 4:1058–1062CrossRefGoogle Scholar
  16. Fantoni R, Borsella E, Piccirillo S et al (1990) Laser synthesis and crystallographic characterization of ultrafine SiC powders. J Mater Res 5(1):143–150CrossRefGoogle Scholar
  17. Fubini B, Mollo L, Giamello E (1995) Free radical generation at the solid/liquid interface in iron containing minerals. Free Rad Res 23:593–614CrossRefGoogle Scholar
  18. Fubini B, Fenoglio I, Elias Z et al (2001) Variability of biological responses to silicas: effect of origin, crystallinity, and state of surface on generation of reactive oxygen species and morphological transformation of mammalian cells. J Environ Pathol Toxicol Oncol 20(1):95–108Google Scholar
  19. Hatakeyama F, Kanzaki S (1990) Synthesis of monodispersed β-spherical SiC powder by a sol-gel process. J Am Ceram Soc 73(7):2107–2110CrossRefGoogle Scholar
  20. Herlin-Boime N, Vicens J, Dufour C et al (2004) Flame temperature effect on the structure of SiC nanoparticles grown by laser pyrolysis. J Nanopart Res 6(1):63–70CrossRefGoogle Scholar
  21. Kagan VE, Tyurina YY, Tyurin VA et al (2006) Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett 165(1):88–100CrossRefGoogle Scholar
  22. Kassiba A, Makowska-Janusik M, Bouclé J et al (2002) Photoluminescence features on the Raman spectra of quasi-stoichiometric SiC nanoparticles: experimental and numerical simulations. Phys Rev B 66:155317CrossRefGoogle Scholar
  23. Keenan CR, Goth-Goldstein R, Lucas D et al (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ Sci Technol 43(12):4555–4560CrossRefGoogle Scholar
  24. Leclerc L, Boudard D, Pourchez J et al (2010) Quantification of microsized fluorescent particles phagocytosis to a better knowledge of toxicity mechanisms. Inhal Toxicol 22:1091–1100Google Scholar
  25. Leclerc L, Rima W, Boudard D et al (2012) Size of submicrometric and nanometric particles affect cellular uptake and biological activity of macrophages in vitro. Inhal Toxicol 24(9):580–588Google Scholar
  26. Leconte Y, Maskrot H, Combemale L et al (2007) Application of the laser pyrolysis to the synthesis of SiC, TiC and ZrC pre-ceramics nanopowders. J Anal Appl Pyrol 79:465–470CrossRefGoogle Scholar
  27. Leconte Y, Leparoux M, Portier X, Herlin-Boime N et al (2008) Controlled synthesis of β-SiC nanopowders with variable stoichiometry using inductively coupled plasma. Plasma Chem Plasma Process 28:233CrossRefGoogle Scholar
  28. Melinon P, Masenelli B, Tournus F et al (2007) Playing with carbon and silicon at the nanoscale. Nat Mater 6(7):479–490CrossRefGoogle Scholar
  29. Morose G (2010) The 5 principles of “design for safer nanotechnology”. J Clean Prod 18:285–289CrossRefGoogle Scholar
  30. Prousek J (2007) Fenton chemistry in biology and medicine. Pure Appl Chem 79(12):2325–2338CrossRefGoogle Scholar
  31. Seog IS, Kim CH (1993) Preparation of monodispersed spherical silicon carbide by the sol–gel method. J Mater Sci 28:3277CrossRefGoogle Scholar
  32. Svensson I, Arturson E, Leanderson P et al (1997) Toxicity in vitro of some silicon carbides and silicon nitrides: whiskers and powders. Am J Ind Med 31:335–343CrossRefGoogle Scholar
  33. Tong R, Christian DA, Tang L et al (2009) Nanopolymeric therapeutics. MRS Bull 34(6):422–431CrossRefGoogle Scholar
  34. Tougne P, Hommel H, Legrand AP et al (1993) Evolution of the structure of ultrafine SiC-laser formed powders with synthesis conditions. Diamond Relat Mater 2:486CrossRefGoogle Scholar
  35. Turci F, Tomatis M, Lesci IG et al (2010) The iron-related molecular toxicity mechanism of synthetic asbestos nanofibres: a model study for high-aspect-ratio nanoparticles. Chemistry 17(1):350–358Google Scholar
  36. Vaughan GL, Trently SA, Wilson RB (1993) Pulmonary response, in vivo, to silicon-carbide whiskers. Environ Res 63(2):191–201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jérémie Pourchez
    • 1
    • 2
  • Valérie Forest
    • 1
    • 2
  • Najih Boumahdi
    • 2
    • 3
  • Delphine Boudard
    • 2
    • 4
    • 5
    • 6
  • Maura Tomatis
    • 7
  • Bice Fubini
    • 7
  • Nathalie Herlin-Boime
    • 8
  • Yann Leconte
    • 8
  • Bernard Guilhot
    • 2
    • 3
  • Michèle Cottier
    • 2
    • 4
    • 5
    • 6
  • Philippe Grosseau
    • 2
    • 3
  1. 1.Ecole Nationale Supérieure des Mines, CIS-EMSELINA EA 4624Saint-EtienneFrance
  2. 2.SFR IFRESISSaint-EtienneFrance
  3. 3.Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:FRE3312LPMGSaint-EtienneFrance
  4. 4.Université Jean Monnet, Faculté de MédecineLINA EA-4624Saint-EtienneFrance
  5. 5.Université de LyonSaint-EtienneFrance
  6. 6.CHU de Saint-EtienneSaint-EtienneFrance
  7. 7.Dipartimento di Chimica and ‘G. Scansetti’ Interdepartmental Center for Studies on Asbestos and other Toxic ParticulatesUniversità di TorinoTurinItaly
  8. 8.Laboratoire Francis PerrinService des Photons, Atomes et Molécules, CEA-CNRS URA2453, IRAMIS, CEA SACLAYGif sur YvetteFrance

Personalised recommendations