Journal of Nanoparticle Research

, 14:1136 | Cite as

Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

  • Chris BinnsEmail author
  • Pilar Prieto
  • Stephen Baker
  • Paul Howes
  • Ruggero Dondi
  • Glenn Burley
  • Leonardo Lari
  • Roland Kröger
  • Andrew Pratt
  • Sitki Aktas
  • John K. Mellon
Research Paper
Part of the following topical collections:
  1. Nanomaterials in energy, health and environment


We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core–shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe@Au and Fe@Fe-oxide core–shell nanoparticles with diameters in the range 5–15 nm. We demonstrate the power of the method in practical applications in the case of Fe@Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.


Magnetic nanoparticle hyperthermia Gas phase synthesis Core–shell nanoparticles 


  1. Alqudami A, Annapoorni S (2007) Metallic silver and iron nanoparticles prepared by exploding wire technique. Plasmonics 2:5CrossRefGoogle Scholar
  2. Atkinson WJ, Brezovich IA, Chakraborty DP (1984) Usable frequencies in hyperthermia with thermal seeds. IEEE Trans Biomed Eng 31:70CrossRefGoogle Scholar
  3. Baker SH, Thornton SC, Keen AM, Preston TI, Norris C, Edmonds KW, Binns C (1997) The construction of a gas aggregation source for the preparation of mass-selected ultra-small metal particles. Rev Sci Instr 68:1853CrossRefGoogle Scholar
  4. Baker SH, Thornton SC, Edmonds KW, Maher MJ, Norris C, Binns C (2000) Characterisation of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev Sci Instr 71:3178CrossRefGoogle Scholar
  5. Baker SH, Roy M, Qureshi M, Binns C (2010) Probing atomic structure in magnetic core/shell nanoparticles using synchrotron radiation. J Phys Condens Matter 22:385301CrossRefGoogle Scholar
  6. Baker SH, Roy M, Thornton SC, Binns C (2012) Realizing high magnetic moments in fcc Fe nanoparticles through atomic structure stretch. J Phys Condens Matter 24:176001CrossRefGoogle Scholar
  7. Bellino MG, Calco EJ, Gordillo G (2004) Adsorption kinetics of charged thiols on gold nanoparticles. Phys Chem Chem Phys 6:424CrossRefGoogle Scholar
  8. Binns C (2001) Nanoclusters deposited on surfaces. Surf Sci Rep 44:1CrossRefGoogle Scholar
  9. Binns C (2010) Introduction to nanoscience and nanotechnology, Chapter 6. Wiley, HobokenCrossRefGoogle Scholar
  10. Binns C, Maher MJ, Pankhurst QA, Kechrakos D, Trohidou KN (2002) Magnetic behaviour of nanostructured films assembled from preformed Fe clusters embedded in Ag. Phys Rev B 66:184413CrossRefGoogle Scholar
  11. Binsted N (1998) EXCURV98: Daresbury Laboratory computer programGoogle Scholar
  12. Boatman EM, Lisensky GC, Nordell KJ (2005) A safer, easier, faster synthesis for CdSe quantum dot nanocrystals. J Chem Educ 82:1697CrossRefGoogle Scholar
  13. Bönnemann H, Brijoux W, Brinkmann R, Matoussevitch N, Waldöfner N, Palina N, Modrow H (2003) A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles. Inorg Chim Acta 350:617CrossRefGoogle Scholar
  14. Bouwen W, Thoen P, Vanhoutte F, Bouckaert S, Despa F, Weidele H, Silverans RE, Lievens P (2000) Production of bimetallic clusters by a dual-target dual-laser vaporization source. Rev Sci Instrum 71:54CrossRefGoogle Scholar
  15. Coker VS, Telling ND, Van Der Laan G, Pattrick RAD, Pearce CI, Arenholz E, Tuna F, Winpenny REP, Lloyd JR (2009) Harnessing the extracellular bacterial production of nanoscale cobalt ferrite with exploitable magnetic properties. Proc Natl Acad Sci USA 3:1922Google Scholar
  16. Dou Y, Zhigilei LV, Winograd N, Garrison BJ (2001) Explosive boiling of water films adjacent to heated surfaces: a microscopic description. J Phys Chem A 105:2748CrossRefGoogle Scholar
  17. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221CrossRefGoogle Scholar
  18. Filiponi A, Bocowski M, Bowron DT, Ansell S, De Panfilis S, Di Ciccio A, Itie J-P (2000) An experimental station for advanced research on condensed matter under extreme conditions at the European synchrotron radiation facility—BM29 beamline. Rev Sci Instrum 71:2422CrossRefGoogle Scholar
  19. Fiorani D, Testa AM, Lucari F, D’Orazio F, Romero H (2002) Magnetic properties of maghemite nanoparticle systems: surface anisotropy and interparticle interaction effects. Physica B 320:122CrossRefGoogle Scholar
  20. Foiles SM, Baskes MI, Daw MS (1986) Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 33:7983CrossRefGoogle Scholar
  21. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628CrossRefGoogle Scholar
  22. Garcia-Martinez JC, Scott RWJ, Crooks RM (2003) Extraction of monodisperse palladium nanoparticles from dendrimer templates. J Am Chem Soc 125:11190CrossRefGoogle Scholar
  23. Getzlaff M, Kleibert A, Methling R, Bansmann J, Meiwes-Broer K-H (2004) Mass-filtered ferromagnetic alloy clusters on surfaces. Surf Sci 566–568:332CrossRefGoogle Scholar
  24. Granqvist C, Kish L, Marlow M (eds) (2005) Gas phase nanoparticle synthesis, Springer, Berlin. ISBN-13: 978-1402024436Google Scholar
  25. Guo L, Huang Q, Li XY, Yang S (2001) Iron nanoparticles:Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Phys Chem Chem Phys 3:1661CrossRefGoogle Scholar
  26. Haberland H, Karrais M, Mall M, Thurner Y (1992) Thin films from energetic cluster impact: a feasibility study. J Vac Sci Technol A 10:3266CrossRefGoogle Scholar
  27. Haun JB, Yoon T-J, Lee H, Weissleder R (2010) Magnetic nanoparticle biosensors. Nanomed and Nanobiotech 2:291CrossRefGoogle Scholar
  28. Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 293:80CrossRefGoogle Scholar
  29. Hergt R, Dutz S, Müller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys Condens Matter 18:S2919CrossRefGoogle Scholar
  30. Hergt R, Dutz S, Röder M (2008) Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 20:385214CrossRefGoogle Scholar
  31. Hergt R, Dutz S, Zeisberger M (2010) Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology 21:015706CrossRefGoogle Scholar
  32. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927CrossRefGoogle Scholar
  33. Iles GN, Baker SH, Thornton SC, Binns C (2009) Enhanced capability in a gas aggregation source for magnetic nanoparticles. J Appl Phys 105:024306CrossRefGoogle Scholar
  34. Johannsen M, Gneveckow U, Taymoorian M, Thiesen B, Waldoefner N, Scholz R, Jung K, Jordan A, Wust P, Loening S (2007) Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. Int J Hyperther 23:315CrossRefGoogle Scholar
  35. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926CrossRefGoogle Scholar
  36. Ju S-P (2005) A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle. J Chem Phys 122:094718CrossRefGoogle Scholar
  37. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509CrossRefGoogle Scholar
  38. Köth A, Koetz J, Appelhans D, Voit B (2008) “Sweet” gold nanoparticles with oligosaccharide- modified poly(ethyleneimine). Colloid Polym Sci 286:1317CrossRefGoogle Scholar
  39. Kouchi A (1987) Vapour pressure of amorphous ice and its astrophysical implications. Nature 330:550CrossRefGoogle Scholar
  40. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, Feussner A, von Deimling A, Waldoefner N, Felix R, Jordan A (2007) Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol 81:53CrossRefGoogle Scholar
  41. Massalski TB, Murray JL, Bennet LH, Baker H (eds) (1986) Binary alloy diagrams. American Society for Metals, Metals Park, p 368Google Scholar
  42. Mehdaoui B, Meffre A, Lacroix L-M, Carrey J, Lachaize S, Gougeon M, Respaud M, Chaudret B (2010) Large specific absorption rates in the magnetic hyperthermia properties of metallic iron nanocubes. J Magn Magn Mater 322:L49CrossRefGoogle Scholar
  43. Mosselmans JFW, Quinn PD, Dent AJ, Cavill SA, Moreno SD, Peach A, Leicester PJ, Keylock SJ, Gregory SR, Atkinson KD, Rosell JR (2009) I18—the microfocus spectroscopy beamline at the diamond light source. J Synchrotron Radiat 16:818CrossRefGoogle Scholar
  44. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156:1CrossRefGoogle Scholar
  45. Pankhurst QA, Thanh NKT, Jones SK, Dobson J (2009) Progress in applications of magnetic nanoparticles in biomedicine. J Phys D 42:224001CrossRefGoogle Scholar
  46. Perez A, Melinon P, Dupuis V, Bardotti L, Masenelli B, Tournus F, Prevel B, Tuaillon-Combes J, Bernstein E, Tamion A, Blanc N, Tainoff D, Boisron O, Guiraud G, Broyer M, Pellarin M, Del Fatti N, Vallee F, Cottancin E, Lerme J, Vialle J-L, Bonnet C, Maioli P, Crut A, Clavier C, Rousset JL, Morfin F (2010) Functional nanostructures from clusters. Int J Nanotechnol 7:523CrossRefGoogle Scholar
  47. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1CrossRefGoogle Scholar
  48. Pratt A, Shah A, Lari L, Woffinden S, Tear SP, Binns C, Kröger R (2012) Initial-oxidation induced strain effects in Fe/Fe-oxide core-shell nanoparticles. Nat Mater (submitted)Google Scholar
  49. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370CrossRefGoogle Scholar
  50. Rosi L, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547CrossRefGoogle Scholar
  51. Solokov K, Follen M, Aaron J, Pavlova I, Malpica R, Lotan R, Richards-Kortum R (2003) Real- time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999Google Scholar
  52. Spohr EJ (1998) Computer simulation of the structure of the electrochemical double layer. J Electroanal Chem 450:327CrossRefGoogle Scholar
  53. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic nanocrystal superlattices. Science 287:1989CrossRefGoogle Scholar
  54. Tenderholt A, Hedman B Hodgson KO (2007) PySpine: a modern, cross-platform program for the processing of raw averaged XAS edge and EXAFS data. 13th Int Conf.XAFS: AIP Conf Proc 882:105Google Scholar
  55. Tsang E (2008) Synthesis of clusters and nanoparticles by chemical methods in metallic nanoparticles. In: John Blackman (ed) Handbook of metal physics, vol 5. Elsevier, Amsterdam, chapter 4Google Scholar
  56. Yang Y, Matsubara S, Nogami M, Shi J (2007) Controlling the aggregation behavior of gold nanoparticles. Mater Sci Eng B 140:172CrossRefGoogle Scholar
  57. Zhang G, Wei G, Zheng K, Li L, Xu D, Wang D, Xue Y, Su W (2010a) The synthesis of beta-SiC nanoparticles by high-energy mechanical ball milling and their photoluminescence properties. J Nanosci Nanotechnol 10:1951CrossRefGoogle Scholar
  58. Zhang Y, Padhyay A, Sevilleja JE, Guerrant RI, Geddes CD (2010b) Interactions of fluorophores with iron-nanoparticles: metal-enhanced fluorescence. J Phys Chem C 114:7575CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Chris Binns
    • 1
    Email author
  • Pilar Prieto
    • 2
  • Stephen Baker
    • 1
  • Paul Howes
    • 1
  • Ruggero Dondi
    • 3
  • Glenn Burley
    • 4
  • Leonardo Lari
    • 5
    • 6
  • Roland Kröger
    • 5
  • Andrew Pratt
    • 5
  • Sitki Aktas
    • 1
  • John K. Mellon
    • 7
  1. 1.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  2. 2.Departamento de Fısica Aplicada C-XIIUniversidad Autonoma de MadridMadridSpain
  3. 3.Department of ChemistryUniversity of LeicesterLeicesterUK
  4. 4.Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowUK
  5. 5.Department of PhysicsUniversity of YorkYorkUK
  6. 6.The York JEOL Nanocentre, York Science ParkYorkUK
  7. 7.Department of Cancer Studies and Molecular MedicineUniversity of LeicesterLeicesterUK

Personalised recommendations