Synthesis of amorphous acid iron phosphate nanoparticles

  • E. PalaciosEmail author
  • P. Leret
  • J. F. Fernández
  • A. H. De Aza
  • M. A. Rodríguez
Research Paper


A simple method to precipitate nanoparticles of iron phosphate with acid character has been developed in which the control of pH allows to obtain amorphous nanoparticles. The acid aging of the precipitated amorphous nanoparticles favored the P–O bond strength that contributes to the surface reordering, the surface roughness and the increase of the phosphate acid character. The thermal behavior of the acid iron phosphate nanoparticles has been also studied and the phosphate polymerization at 400 °C produces strong compacts of amorphous nanoparticles with interconnected porosity.


Synthesis Nanoparticles Amorphous phosphate X-ray diffraction 



This work has been financially supported under contract by MAT2010-21088-C03-01. E. Palacios acknowledges the financial support of the JAE (CSIC) fellowship program.


  1. Boonchom B, Danvirutai C (2007) Thermal decomposition kinetics of FePO4·3H2O precursor to synthesize spherical nanoparticles FePO4. Ind Eng Chem Res 46:9071–9076. doi: 10.1021/ie071107z CrossRefGoogle Scholar
  2. Boonchom B, Youngme S, Maensiri S, Danvirutai C (2008) Nanocrystalline serrabrancaite (MnPO4·H2O) prepared by a simple precipitation route at low temperature. J Alloys Compd 454:78–82. doi: 10.1016/j.jallcom.2006.12.064 CrossRefGoogle Scholar
  3. Boonchom B, Baitahe R, Joungmunkong Z, Vittayakorn N (2010) Grass blade-like microparticle MnPO4·H2O prepared by a simple precipitation at room temperature. Powder Technol 203:310–314. doi: 10.1016/j.powtec.2010.05.022 CrossRefGoogle Scholar
  4. Burrel LS, Johnston CT, Schulze D, Klein J, White JL, Hem SL (2001) Aluminum phosphate adjuvants prepared by precipitation at constant pH. Part I: composition and structure. Vaccine 19:275–281CrossRefGoogle Scholar
  5. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954. doi: 10.1016/j.jpowsour.2009.08.089 CrossRefGoogle Scholar
  6. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193. doi: 10.1038/nature07853 CrossRefGoogle Scholar
  7. Lagno F, Demopoulos GP (2005) Synthesis of hydrated aluminum phosphate, AlPO4·1.5H2O (AlPO4–H3), by controlled reactive crystallization in sulfate media. Ind Eng Chem Res 44:8033–8038. doi: 10.1021/ie0505559 CrossRefGoogle Scholar
  8. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois Ph (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng R 63:100–125CrossRefGoogle Scholar
  9. Lynn AK, Bonfield W (2005) A novel method for the simultaneous, titrant-free control of pH and calcium phosphate mass yield. Acc Chem Res 38:202–207CrossRefGoogle Scholar
  10. Wang M, Xue Y, Zhang K, Zhang Y (2011) Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4. Electrochim Acta 56:4294–4298CrossRefGoogle Scholar
  11. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRefGoogle Scholar
  12. Prosini PP, Lisi M, Scaccia S, Carewska M, Cardellini F, Pasquali M (2002) Synthesis and characterization of amorphous hydrated FePO4 and Its electrode performance in lithium batteries. J Electrochem Soc 149:A297. doi: 10.1149/1.1435359 CrossRefGoogle Scholar
  13. Ray NH (1979) The structure and properties of inorganic polymeric phosphates. Br Polym J 11:163–177. doi: 10.1002/pi.4980110402 CrossRefGoogle Scholar
  14. Rodríguez-Paéz J, Caballero AC, Villegas M, Moure C, Durán P, Fernández JF (2001) Controlled precipitation methods: formation mechanism of ZnO nanoparticles. J Eur Ceram Soc 21:925–930. doi: 10.1016/S0955-2219(00)00283-1 CrossRefGoogle Scholar
  15. Scaccia S, Carewska M, Prosini PP (2004) Thermoanalytical study of iron(III) phosphate obtained by homogeneous precipitation from different media. Thermochim Acta 413:81–86. doi: 10.1016/j.tca.2003.10.024 CrossRefGoogle Scholar
  16. Shi Z, Attia A, Ye W, Wang Q, Li Y, Yang Y (2008) Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries. Electrochim Acta 53:2665–2673. doi: 10.1016/j.electacta.2007.06.079 CrossRefGoogle Scholar
  17. Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts. Wiley, ChichesterGoogle Scholar
  18. Song Y, Zavalij PY, Suzuki M, Whittingham MS (2002) New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties. Inorg Chem 41:5778–5786CrossRefGoogle Scholar
  19. Zhang L, Schlesinger ME, Brow RK (2011) Phase equilibria in the Fe2O3–P2O5 system. J Am Ceram Soc 94:1605–1610. doi: 10.1111/j.1551-2916.2010.04287.x CrossRefGoogle Scholar
  20. Zhang Y, Du P, Huo Qing, Li Wang, Ai Zhang, Song Y, Lv Y, Li G (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met 162:1315–1326. doi: 10.1016/j.synthmet.2012.04.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • E. Palacios
    • 1
    Email author
  • P. Leret
    • 1
  • J. F. Fernández
    • 1
  • A. H. De Aza
    • 1
  • M. A. Rodríguez
    • 1
  1. 1.Instituto de Cerámica y Vidrio, ICV-CSICMadridSpain

Personalised recommendations