Journal of Nanoparticle Research

, 14:1130 | Cite as

A facile synthetic route toward air-stable magnetic nanoalloys with Fe–Ni/Fe–Co core and iron oxide shell

  • Alexios P. DouvalisEmail author
  • Radek ZborilEmail author
  • Athanasios B. Bourlinos
  • Jiri Tucek
  • Stavroula Spyridi
  • Thomas Bakas
Research Paper


Air-stable bimetallic spherically shaped Fe–Ni and Fe–Co magnetic nanoparticles (MNPs), having an average size of 15 nm and core–shell structure, were synthesized by a simple wet chemical method under ambient conditions. For the first time, sodium borohydride reduction method, commonly applied for the syntheses of metal nanoparticles, was used for the preparation of well-defined Fe–Ni and Fe–Co nanoalloys, avoiding exploitation of any organic solvent. This approach allows a large scale production of nanoparticles specifically stabilized by an iron oxyhydroxide shell without a need of secondary functionalization. Transmission electron microscopy, X-ray powder diffraction, X-ray fluorescence, magnetization, and Mössbauer data demonstrate a core–shell nature of the as-synthesized nanoparticles. The nanoparticle core is of metallic origin and is inhomogeneous at the atomic level, consisting of iron-rich and iron-poor alloy phases. The composition of the shell is close to the ferrihydrite and its role lies in prevention of oxidation-induced degradation of nanoparticle properties. The core is ferromagnetic at and below room temperature, experiencing superparamagnetic relaxation effects due to a reduced size of nanoparticles, whereas the shell is completely superparamagnetic at 300 K and magnetically orders below ~25 K. Both developed types of magnetic nanoalloys exhibit a strong magnetic response under applied magnetic fields with a high magnetization values achievable at relatively low applied magnetic fields. Beside this, the highly biocompatible chemical composition of the nanoparticle shell and ability of its chemical modification by substitution or addition of other ions or molecules further empower the application potential of these MNPs, especially in the field of biomedicine.


Magnetic nanoparticles Core–shell Borohydride Ferrihydrite Mössbauer spectroscopy Magnetization measurements 



The authors gratefully acknowledge the support by the Operational Program Research and Development for Innovations—European Regional Development Fund (Project No. CZ.1.05/2.1.00/03.0058) of the Ministry of Education, Youth, and Sports of the Czech Republic and by the Academy of Sciences of the Czech Republic (Project No. KAN115600801).


  1. Berry CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D 36:R198–R206. doi: 10.1088/0022-3727/36/13/203 CrossRefGoogle Scholar
  2. Bertotti G (1998) Hysteresis in magnetism. Academic Press, San DiegoGoogle Scholar
  3. Bourlinos AB, Panagiotopoulos I, Niarchos D, Petridis D (2004) Hydrophilic Co–Pt alloy nanoparticles: synthesis, characterization, and perspectives. J Mater Res 19:1227–1233. doi: 10.1557/JMR.2004.0159 CrossRefGoogle Scholar
  4. Bourlinos AB, Bakandritsos A, Petridis D (2005) One-pot borohydride synthesis of magnetically modified lepidocrocite. Chem Lett 34:666–667. doi: 10.1246/cl.2005.666 CrossRefGoogle Scholar
  5. Chen YZ, Luo XH, Yue GH, Luo XT, Peng DL (2009) Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route. Mater Chem Phys 113:412–416. doi: 10.1016/j.matchemphys.2008.07.118 CrossRefGoogle Scholar
  6. Chu SY, Kline C, Huang MQ, MacHenry ME, Cross J, Harris VG (1999) Preparation, characterization and magnetic properties of an ordered FeCo single crystal. J Appl Phys 85:6031–6033. doi: 10.1063/1.369072 CrossRefGoogle Scholar
  7. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley-VCH, WeinheimGoogle Scholar
  8. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley, MassachusettsGoogle Scholar
  9. Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, New JerseyGoogle Scholar
  10. Djekoun A, Boudinar N, Chebli A, Otmani A, Benabdeslem M, Bouzabata B, Greneche JM (2009) Characterization of Fe and Fe50Ni50 ultrafine nanoparticles synthesized by inert gas-condensation method. Physica B 404:3824–3829. doi: 10.1016/j.physb.2009.07.074 CrossRefGoogle Scholar
  11. Dong XL, Zhang ZD, Zhao XG, Chuang YC, Jin SR, Sun WM (1999) The preparation and characterization of ultrafine Fe–Ni particles. J Mater Res 14:398–406. doi: 10.1557/JMR.1999.0058 CrossRefGoogle Scholar
  12. Douvalis AP, Polymeros A, Bakas T (2010) IMSG09: a 57Fe–119Sn Mossbauer spectra computer fitting program with novel interactive user interface. J Phys: Conf Ser 217:012014. doi: 10.1088/1742-6596/217/1/012014 CrossRefGoogle Scholar
  13. Fiorani D (2005) Surface effects in magnetic nanoparticles. Springer, New YorkCrossRefGoogle Scholar
  14. Ford GC, Harrison PM, Rice DW, Smith JM, Treffry A, White JL, Yariv J (1984) Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc B 304:551–565. doi: 10.1098/rstb.1984.0046 CrossRefGoogle Scholar
  15. Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman and Hall Ltd., LondonCrossRefGoogle Scholar
  16. Gubin SP (2009) Magnetic nanoparticles. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  17. Habib AH, Ondeck CL, Chaudhary P, Bockstaller MR, McHenry ME (2008) Evaluation of iron–cobalt/ferrite core–shell nanoparticles for cancer thermotherapy. J Appl Phys 103:07A307. doi: 10.1063/1.2830975 CrossRefGoogle Scholar
  18. He H, Heist RH, McIntyre BL, Blanton TN (1997) Ultrafine nickel particles generated by laser-induced gas phase photonucleation. Nanostruct Mater 8:879–888. doi: 10.1016/S0965-9773(98)00016-6 CrossRefGoogle Scholar
  19. Hoinville J, Bewick A, Gleeson D, Jones R, Kasyutich O, Mayes E, Nartowski A, Warne B, Wiggins J, Wong K (2003) High density magnetic recording on protein-derived nanoparticles. J Appl Phys 93:7187–7189. doi: 10.1063/1.1555896 CrossRefGoogle Scholar
  20. Jang HD, Hwang DW, Kim DP, Kim HC, Lee BY, Jeong IB (2004) Preparation of cobalt nanoparticles by hydrogen reduction of cobalt chloride in the gas phase. Mater Res Bull 39:63–70. doi: 10.1016/j.materresbull.2003.09.023 CrossRefGoogle Scholar
  21. Johnson CE, Ridout MS, Cranshaw TE, Madsen PE (1961) Hyperfine field and atomic moment of iron in ferromagnetic alloys. Phys Rev Lett 6:450–451. doi: 10.1103/PhysRevLett.6.450 CrossRefGoogle Scholar
  22. Johnson CE, Ridout MS, Cranshaw TE (1963) The Mössbauer effect in iron alloys. Proc Phys Soc 81:1079–1090. doi: 10.1088/0370-1328/81/6/313 CrossRefGoogle Scholar
  23. Kim SS, Kim ST, Ahn JM, Kim KH (2004) Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density. J Magn Magn Mater 271:39–45. doi: 10.1016/j.jmmm.2003.09.012 CrossRefGoogle Scholar
  24. Klabunde KL, Stark JV, Koper O, Mohs C, Khaleel A, Glavee G, Zhang D, Sorensen CM, Hadjipanayis GC (1994) Chemical synthesis of nanophase materials. In: Hadjipanayis GC, Siegel RW (eds) Nanophase materials: synthesis–properties–applications. NATO Advanced Science Institutes Series, Series E, Applied Science, vol 260. Kluwer, Dordrecht, pp 1–19Google Scholar
  25. Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372. doi: 10.1016/S0304-8853(99)00347-9 CrossRefGoogle Scholar
  26. Krishnan KM, Pakhomov AB, Bao Y, Blomqvist P, Chun Y, Gonzales M, Griffin K, Ji X, Roberts BK (2006) Nanomagnetism and spin electronics: materials, microstructure and novel properties. J Mater Sci 41:793–815. doi: 10.1007/s10853-006-6564-1 CrossRefGoogle Scholar
  27. Li XG, Murai T, Saito T, Takahashi S (1998) Thermal stability, oxidation behavior and magnetic properties of Fe–Co ultrafine particles prepared by hydrogen plasma-metal reaction. J Magn Magn Mater 190:277–288. doi: 10.1016/S0304-8853(98)00314-X CrossRefGoogle Scholar
  28. Li XG, Takahashi S, Watanabe K, Kikuchi Y, Koishi M (2001) Hybridization and characteristics of Fe and Fe–Co nanoparticles with polymer particles. Nano Lett 1:475–480. doi: 10.1021/nl010007u CrossRefGoogle Scholar
  29. Li QL, Li HL, Pol VG, Bruckental I, Koltypin Y, Calderon-Moreno J, Nowik I, Gedanken A (2003) Sonochemical synthesis, structural and magnetic properties of air-stable Fe/Co alloy nanoparticles. New J Chem 27:1194–1199. doi: 10.1039/b302136j CrossRefGoogle Scholar
  30. Liu LJ, Guan JG, Shi WD, Sun ZG, Zhao JS (2010) Facile synthesis and growth mechanism of flowerlike Ni–Fe alloy nanostructures. J Phys Chem C 114:13565–13570. doi: 10.1021/jp104212v CrossRefGoogle Scholar
  31. Madsen MB, Mørup S (1986) Magnetic properties of ferrihydrite. Hyperfine Interact 27:329–332. doi: 10.1007/BF02354773 CrossRefGoogle Scholar
  32. Majetich S, Jin Y (1999) Magnetization directions of individual nanoparticles. Science 284:470–473. doi: 10.1126/science.284.5413.470 CrossRefGoogle Scholar
  33. Mazaleyrat F, Ammar M, LoBue M, Bonnet JP, Audebert P, Wang GY, Champion Y, Hytch M, Snoeck E (2009) Silica coated nanoparticles: synthesis, magnetic properties and spin structure. J Alloy Compd 483:473–478. doi: 10.1016/j.jallcom.2008.08.121 CrossRefGoogle Scholar
  34. Mørup S, Hansen MF (2007) Superparamagnetic particles. In: Kronmüller H, Parkin S (eds) Handbook of magnetism and advanced magnetic materials. Wiley-VCH, WeinheimGoogle Scholar
  35. Naik SH, Carroll KJ, Carpenter EE (2011) Characterization of oxidation resistant Fe@M (M = Cr, Ni) core@shell nanoparticles prepared by a modified reverse micelle reaction. J Appl Phys 109:07B519. doi: 10.1063/1.3548828 CrossRefGoogle Scholar
  36. Nie Y, He HH, Gong RZ, Zhang XC (2007) The electromagnetic characteristics and design of mechanically alloyed Fe–Co particles for electromagnetic-wave absorber. J Magn Magn Mater 310:13–16. doi: 10.1016/j.jmmm.2006.07.021 CrossRefGoogle Scholar
  37. Nogues J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructures. Phys Rep Rev Sec Phys Lett 422:65–117. doi: 10.1016/j.physrep.2005.08.004 Google Scholar
  38. Otsuka K, Yamamoto H, Yosizawa A (1984) Preparation of Fe, Co., and Ni ultrafine particles by hydrogen reduction of chloride vapors. Jpn J Chem 6:869–878Google Scholar
  39. Pankhurst QA, Pollard RJ (1992) Structural and magnetic properties of ferrihydrite. Clay Clay Min 40:268–272. doi: 10.1346/CCMN.1992.0400303 CrossRefGoogle Scholar
  40. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167–R181. doi: 10.1088/0022-3727/36/13/201 CrossRefGoogle Scholar
  41. Pardoe H, Chua-anusorn W, St. Pierre TG, Dobson J (2003) Detection limits for ferrimagnetic particle concentrations using magnetic resonance imaging based proton transverse relaxation rate measurements. Phys Med Biol 48:N89–N95. doi: 10.1088/0031-9155/48/6/401 CrossRefGoogle Scholar
  42. Poddar P, Wilson JL, Srikanth H, Ravi BG, Wachsmuth J, Sudarshan TS (2004) Grain size influence on soft ferromagnetic properties in Fe–Co nanoparticles. Mater Sci Eng B 106:95–100. doi: 10.1016/j.mseb.2003.09.011 CrossRefGoogle Scholar
  43. Rheinlander T, Kotitz R, Weitschies W, Semmler W (2000) Magnetic fractionation of magnetic fluids. J Magn Magn Mater 219:219–228. doi: 10.1016/S0304-8853(00)00439-X CrossRefGoogle Scholar
  44. Shafi KVPM, Gedanken A, Goldfarb RB, Felner I (1997) Sonochemical preparation of nanosized amorphous Fe–Ni alloys. J Appl Phys 81:6901–6905. doi: 10.1063/1.365250 CrossRefGoogle Scholar
  45. Shen XQ, Guo LP, Liu MQ, Song FZ, Zhu YW (2011) A simple process for magnetic nanocrystalline porous Co–Fe alloy hollow microfibers. Mater Lett 65:17–18. doi: 10.1016/j.matlet.2011.05.082 CrossRefGoogle Scholar
  46. Sinfelt JH (1983) Bimetallic catalysts—discoveries, concepts, and applications. Wiley, New YorkGoogle Scholar
  47. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogues J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853. doi: 10.1038/nature01687 CrossRefGoogle Scholar
  48. Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82:269–280. doi: 10.1111/j.1551-2916.1999.tb20058.x CrossRefGoogle Scholar
  49. Suh YJ, Jang HD, Chang H, Kim WB, Kim HC (2006) Size-controlled synthesis of Fe–Ni alloy nanoparticles by hydrogen reduction of metal chlorides. Powder Technol 161:196–201. doi: 10.1016/j.powtec.2005.11.002 CrossRefGoogle Scholar
  50. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992. doi: 10.1126/science.287.5460.1989 CrossRefGoogle Scholar
  51. Suresh G, Saravanan P, Babu DR (2011) Synthesis of Fe–Co nanobars using sodium sulfite assisted polyol process and their structural and magnetic studies. J Nano Res 15:21–28. doi: 10.4028/ CrossRefGoogle Scholar
  52. Wang J, Zeng XC (2009) Core–shell magnetic nanoclusters. In: Liu JP, Fullerton E, Gutfleisch O, Sellmyer DJ (eds) Nanoscale magnetic materials and applications. Springer, Dordrecht, pp 35–66CrossRefGoogle Scholar
  53. Webb J, Macey DJ, Chua-anusorn W, St. Pierre TG, Brooker L, Rahman RI, Noller B (1999) Iron biominerals in medicine and the environment. Coord Chem Rev 190–192:1199–1215. doi: 10.1016/S0010-8545(99)00176-9 CrossRefGoogle Scholar
  54. Wertheim GK, Jaccarino V, Wernick JH, Buchanan DNE (1964) Range of the exchange interaction in iron alloys. Phys Rev Lett 12:24–27. doi: 10.1103/PhysRevLett.12.24 CrossRefGoogle Scholar
  55. Wu Z, Zhang M, Yu K, Zhang S, Xie Y (2008) Self-assembled double-shelled ferrihydrite hollow spheres with a tunable aperture. Chem Eur J 14:5346–5352. doi: 10.1002/chem.200701945 CrossRefGoogle Scholar
  56. Xu HM, Zhong W, Qi XS, Au CT, Deng Y, Du YW (2010) Highly stable Fe–Ni alloy nanoparticles encapsulated in carbon nanotubes: synthesis, structure and magnetic properties. J Alloy Compd 495:200–204. doi: 10.1016/j.jallcom.2010.01.121 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alexios P. Douvalis
    • 1
    Email author
  • Radek Zboril
    • 2
    Email author
  • Athanasios B. Bourlinos
    • 1
  • Jiri Tucek
    • 2
  • Stavroula Spyridi
    • 1
    • 3
  • Thomas Bakas
    • 1
  1. 1.Physics DepartmentUniversity of IoanninaIoanninaGreece
  2. 2.Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  3. 3.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece

Personalised recommendations