Advertisement

Journal of Nanoparticle Research

, 14:1125 | Cite as

CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat

  • Christian O. Dimkpa
  • Joan E. McLean
  • Drew E. Latta
  • Eliana Manangón
  • David W. Britt
  • William P. Johnson
  • Maxim I. Boyanov
  • Anne J. Anderson
Research Paper

Abstract

Metal oxide nanoparticles (NPs) are reported to impact plant growth in hydroponic systems. This study describes the impact of commercial CuO (<50 nm) and ZnO (<100 nm) NPs on wheat (Triticum aestivum) grown in a solid matrix, sand. The NPs contained both metallic and non-metallic impurities to different extents. Dynamic light scattering and atomic force microscopy (AFM) assessments confirmed aggregation of the NPs to submicron sizes. AFM showed transformation of ZnO NPs from initial rhomboid shapes in water to elongated rods in the aqueous phase of the sand matrix. Solubilization of metals occurred in the sand at similar rates from CuO or ZnO NPs as their bulk equivalents. Amendment of the sand with 500 mg Cu and Zn/kg sand from the NPs significantly (p = 0.05) reduced root growth, but only CuO NPs impaired shoot growth; growth reductions were less with the bulk amendments. Dissolved Cu from CuO NPs contributed to their phytotoxicity but Zn release did not account for the changes in plant growth. Bioaccumulation of Cu, mainly as CuO and Cu(I)–sulfur complexes, and Zn as Zn-phosphate was detected in the shoots of NP-challenged plants. Total Cu and Zn levels in shoot were similar whether NP or bulk materials were used. Oxidative stress in the NP-treated plants was evidenced by increased lipid peroxidation and oxidized glutathione in roots and decreased chlorophyll content in shoots; higher peroxidase and catalase activities were present in roots. These findings correlate with the NPs causing increased production of reactive oxygen species. The accumulation of Cu and Zn from NPs into edible plants has relevance to the food chain.

Keywords

Environmental health and safety Metal bioaccumulation Metal speciation Metal oxide nanoparticles Oxidative stress Phytotoxicity Solid growth matrix Wheat 

Notes

Acknowledgments

This work was supported by the United States Department of Agriculture (USDA-CSREES) Grant 2009-35603-05037, the Utah Agricultural Experiment Station (Journal Paper # 8261), and the Utah Water Research Laboratory. Thanks to Moon-Juin Ngooi and Jordan Goodman for help with plant growth. For XANES data acquisition, we would like to thank John Katsoudas and Edward Lang for support at the MRCAT/EnviroCAT Sector 10BM beamline. Ken Kemner and Bhoopesh Mishra are thanked for their helpful input regarding the XAS and for help at the beamline. MRCAT operations are supported by U.S. Department of Energy (DOE) and the MRCAT member institutions. Use of the Advanced Photon Source, an Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory, is supported by the DOE under Contract No. DE-AC02-06CH11357.

References

  1. Aarti PD, Tanaka R, Tanaka A (2006) Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiol Plantarum 128:186–197CrossRefGoogle Scholar
  2. Akiyama M, Watanabe Y, Nishikawa T (1989) Peroxidase-activity in mast-cell granules in Urticaria pigmentosa. Dematologica 178:145–150CrossRefGoogle Scholar
  3. Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548CrossRefGoogle Scholar
  4. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  5. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584CrossRefGoogle Scholar
  6. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827CrossRefGoogle Scholar
  7. Barrena R, Casals E, Colon J, Font X, Sanchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosph 75:850–857CrossRefGoogle Scholar
  8. Cakmak I, Horst WJ (1991) Effect of aluminum on liquid peroxidation, superoxide dismutase catalysis and peroxidase activities in root tips of soybean Glycine max. Physiol Plantarum 83:463–468CrossRefGoogle Scholar
  9. Chaoui A, El-Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Comptes Rendus Biol 328:23–31CrossRefGoogle Scholar
  10. Dimkpa C, Merten D, Svatoš A, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172CrossRefGoogle Scholar
  11. Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162CrossRefGoogle Scholar
  12. Dimkpa CO, Calder C, Gajjar P, Merugu S, Huang W, Britt DW, McLean JE, Johnson WP, Anderson AJ (2011a) Interaction of silver nanoparticles with an environmentally beneficial bacterium, Pseudomonas chlororaphis. J Hazard Mater 188:428–435CrossRefGoogle Scholar
  13. Dimkpa CO, Calder A, McLean JE, Britt DW, Anderson AJ (2011b) Responses of a soil bacterium, Pseudomonas chlororaphis O6 to commercial metal oxide nanoparticles compared with responses to metal ions. Environ Pollut 159:1749–1756CrossRefGoogle Scholar
  14. Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012a) CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology 6:635–642Google Scholar
  15. Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012b) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium, Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410CrossRefGoogle Scholar
  16. Dimkpa CO, McLean JE, Britt DW, Johnson WP, Arey B, Lea SA, Anderson AJ (2012c) Nano-specific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticles. Chem Res Toxicol 25:1066–1074Google Scholar
  17. Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828CrossRefGoogle Scholar
  18. Gajewska E, Sklodowska M (2010) Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Safety 73:996–1003CrossRefGoogle Scholar
  19. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9CrossRefGoogle Scholar
  20. Gao FQ, Hong FH, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach—inducing complex of rubisco–rubisco activase. Biol Trace Element Res 111:239–253CrossRefGoogle Scholar
  21. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase? Biometals 21:211–217CrossRefGoogle Scholar
  22. Ghose S (1964) The crystal structure of hydrozincite, Zn5(OH)6(CO3)2. Acta Crystallogr A 17:1051–1057CrossRefGoogle Scholar
  23. Haiming F, Lintao Y, Wenshen H, Xingfang W, Zhenyu W, Sishen X, Bingsuo Z (2004) Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnol 15:37CrossRefGoogle Scholar
  24. Haslett BS, Reid RJ, Rengel Z (2001) Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Ann Bot 87:379–386CrossRefGoogle Scholar
  25. Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanopart Res 11:1453–1463CrossRefGoogle Scholar
  26. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis julifloravelutina (velvet mesquite) treated with ZnO nanoparticles. Chem Eng J 170:346–352CrossRefGoogle Scholar
  27. Hill RJ, Jones JB (1976) Crystal-structure of hopeite. Am Mineral 61:987–995Google Scholar
  28. Jouvin D, Weiss DJ, Mason TFM, Bravin MN, Louvat P, Zhao F, Ferec F, Hinsinger P, Benedetti MF (2012) Stable isotopes of Cu and Zn in higher plants: evidence for Cu reduction at the root surface and two conceptual models for isotopic fractionation processes. Environ Sci Technol 46:2652–2660Google Scholar
  29. Kau LS, Spira-Solomon DJ, Penner-Hahn JE, Hodgson KO, Solomon EI (1987) X-ray absorption edge determination of the oxidation state and coordination number of copper. Application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen. J Am Chem Soc 109:6433–6442CrossRefGoogle Scholar
  30. Kim JY, Rodriguez JA, Hanson JC, Frenkel AI, Lee PL (2003) Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J Am Chem Soc 125:10684–10692CrossRefGoogle Scholar
  31. Kropf AJ, Katsoudas J, Chattopadhyay S, Shibata T, Lang EA, Zyryanov VN, Ravel B, McIvor K, Kemner KM, Scheckel KG, Bare SR, Terry J, Kelly SD, Bunker BA, Segre CU (2010) The new MRCAT (Sector 10) bending magnet beamline at the advanced photon source. AIP Conf Proc 1234:299–302CrossRefGoogle Scholar
  32. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921CrossRefGoogle Scholar
  33. Lee WL, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675CrossRefGoogle Scholar
  34. Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250CrossRefGoogle Scholar
  35. Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585CrossRefGoogle Scholar
  36. Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896–1908CrossRefGoogle Scholar
  37. Lindsay WL (1979) Chemical equilibrium in soils. Wiley, New YorkGoogle Scholar
  38. Liu X, Chen G, Su C (2011) Effects of material properties on sedimentation and aggregation of titanium dioxide nanoparticles of anatase and rutile in the aqueous phase. J Colloid Interface Sci 363:84–91CrossRefGoogle Scholar
  39. López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320CrossRefGoogle Scholar
  40. Manceau A, Matynia A (2010) The nature of Cu bonding to natural organic matter. Geochim Cosmochim Acta 74:2556–2580CrossRefGoogle Scholar
  41. Márquez-García B, Córdoba F (2009) Antioxidative system and oxidative stress markers in wild populations of Erica australis L. differentially exposed to pyrite mining activities. Environ Res 109:968–974CrossRefGoogle Scholar
  42. Montes-Burgos I, Walczyk D, Patrick H, Smith J, Lynch I, Dawson K (2010) Characterization of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47–53CrossRefGoogle Scholar
  43. Nair R, Varghese SH, Nair NG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  44. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol 17:372–386CrossRefGoogle Scholar
  45. Newville M (2001) IFEFFIT: interactive XAFS analysis and FEFF fitting. J Synchrotron Radiat 8:322–324CrossRefGoogle Scholar
  46. Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434CrossRefGoogle Scholar
  47. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720CrossRefGoogle Scholar
  48. Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plantarum 46:289–294CrossRefGoogle Scholar
  49. Parsons JG, Lopez ML, Gonzalez CM, Peralta-Videa JR, Gardea-Torresdey JL (2010) Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ Toxicol Chem 29:1146–1154Google Scholar
  50. Paschke MW, Redente EF (2002) Copper toxicity thresholds for important restoration grass species of the Western United States. Environ Toxicol Chem 21:2692–2697CrossRefGoogle Scholar
  51. Paschke MW, Perry LG, Redente EF (2006) Zinc toxicity thresholds for reclamation forb species. Water Air Soil Pollut 170:317–330CrossRefGoogle Scholar
  52. Perreault F, Oukarroum A, Pirastru L, Sirois L, Matias WG, Popovic R (2010) Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba. J Bot 763142Google Scholar
  53. Pokrovsky OS, Pokrovski GS, Shirokova LS, Gonzalez AG, Emnova EE, Feurtet-Mazel A (2012) Chemical and structural status of copper associated with oxygenic and anoxygenic phototrophs and heterotrophs: possible evolutionary consequences. Geobiol 10:130–149CrossRefGoogle Scholar
  54. Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503CrossRefGoogle Scholar
  55. Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105CrossRefGoogle Scholar
  56. Preis W, Gamsjäger H (2001) Solid + solute) phase equilibria in aqueous solution. XIII. Thermodynamic properties of hydrozincite and predominance diagrams for (Zn2+ + H2O + CO2. The J Chem Thermodynamics 33:803–819CrossRefGoogle Scholar
  57. Qu J, Yuan X, Wang X, Shao P (2011) Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ Pollut 159:1783–1788CrossRefGoogle Scholar
  58. Ravel B, Newville M (2005) ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  59. Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquatic Toxicol 96:109–114CrossRefGoogle Scholar
  60. Sarret G, Laprade PS, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826CrossRefGoogle Scholar
  61. Shi J, Wu B, Yuan X, YY C, Chen X, Chen Y, HU T (2008) An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant Soil 302:163–174CrossRefGoogle Scholar
  62. Sies H (1999) Glutathione and its role in cellular functions. Free Radic Biol Med 27:916–921CrossRefGoogle Scholar
  63. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479CrossRefGoogle Scholar
  64. Stern EA, Heald SM (1979) X-ray filter assembly for fluorescence measurements of x-ray absorption fine-structure. Rev Sci Instrum 50:1579–1582CrossRefGoogle Scholar
  65. Tait MA, Hik SD (2003) Is dimethylsulfoxide a reliable solvent for extracting chlorophyll under field conditions? Photosynth Res 78:87–91CrossRefGoogle Scholar
  66. Topnani N, Kushwaha S, Athar T (2009) Wet synthesis of copper oxide nanopowder. Int J Green Nanotechnol 1:M67–M73CrossRefGoogle Scholar
  67. Vansteveninck RFM, Babare A, Fernando DR, Vansteveninck ME (1994) The binding of zinc, but not cadmium, by phytic acid in roots of crop plants. Plant Soil 167:157–164CrossRefGoogle Scholar
  68. Voegelin A, Pfister S, Scheinost AC, Marcus MA, Kretzschmar R (2005) Changes in zinc speciation in field soil after contamination with zinc oxide. Environ Sci Technol 39:6616–6623CrossRefGoogle Scholar
  69. Warne MS, Heemsbergen D, Stevens D, McLaughlin M, Cozens G, Whatmuff M, Broos K, Barry G, Bell M, Nash D, Pritchard D, Penney N (2008) Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environ Toxicol Chem 27:786–792CrossRefGoogle Scholar
  70. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84CrossRefGoogle Scholar
  71. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in the phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132CrossRefGoogle Scholar
  72. Zaets I, Kramarev S, Kozyrovskam N (2010) Inoculation with a bacterial consortium alleviates the effect of cadmium overdose in soybean plants. Cent Eur J Biol 5:481–490CrossRefGoogle Scholar
  73. Zhang ZY, He X, Zhang HF, Zhang P, Ding YY, Zhao YL (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–822CrossRefGoogle Scholar
  74. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Christian O. Dimkpa
    • 1
    • 2
  • Joan E. McLean
    • 3
  • Drew E. Latta
    • 4
  • Eliana Manangón
    • 5
  • David W. Britt
    • 1
  • William P. Johnson
    • 5
  • Maxim I. Boyanov
    • 4
  • Anne J. Anderson
    • 1
    • 2
  1. 1.Department of Biological EngineeringUtah State UniversityLoganUSA
  2. 2.Department of BiologyUtah State UniversityLoganUSA
  3. 3.Utah Water Research LaboratoryUtah State UniversityLoganUSA
  4. 4.Biosciences DivisionArgonne National LaboratoryArgonneUSA
  5. 5.Department of Geology and GeophysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations