Advertisement

Journal of Nanoparticle Research

, 14:1123 | Cite as

The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

  • A. G. BezerraJr.
  • A. Barison
  • V. S. Oliveira
  • L. Foti
  • M. A. Krieger
  • R. Dhalia
  • I. F. T. Viana
  • W. H. SchreinerEmail author
Research Paper

Abstract

We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV–Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the μM range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation–reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V2O5 form.

Keywords

Cysteine Glutathione Protein Vanadate NMR 

Notes

Acknowledgments

We acknowledge the support of CPqD—Centro de Pesquisa e Desenvolvimento em Telecomunicações and CNPq—Conselho de Desenvolvimento Científico e Tecnológico, Brazilian agencies.

References

  1. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal particles. Phys Chem Chem Phys 11:3805–3821CrossRefGoogle Scholar
  2. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950CrossRefGoogle Scholar
  3. Celestino-Santos W, Bezerra AG Jr, Cezar AB, Mattoso N, Schreiner WH (2011) Vanadium oxide nanoparticles as optical sensors of cysteine. J Nanosci Nanotechnol 11:4702–4707CrossRefGoogle Scholar
  4. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems and apoptosis. Free Radic Biol Med 48:749–762CrossRefGoogle Scholar
  5. Crans DC, Baruah B, Ross A, Levinger NE (2009) Impact of confinement and interfaces on coordination chemistry: using oxovanadate reactions and proton transfer reactions as probes in reverse micelles. Coord Chem Rev 253:2178–2185CrossRefGoogle Scholar
  6. Forsters SM (2003) Diagnosing HIV infection. Clin Med 3:203–205Google Scholar
  7. Ji H, Zhu L, Liang D, Liu Y, Cai L, Zhang S, Liu S (2009) Use of a 12-molybdovanadate (V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor. Electrochim Acta 54:7429–7434CrossRefGoogle Scholar
  8. Krieger MA, Almeida E, Oelemann W, Lafaille JJ, Pereira JB, Krieger H, Carvalho MR, Goldenberg S (1992) Use of recombinant antigens for the accurate immunodiagnosis of Chagas’ disease. Am J Trop Med Hyg 46:427–434Google Scholar
  9. Lim II, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, Pan Y, Zhou S (2007) Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir 23:826–833CrossRefGoogle Scholar
  10. Lu C, Zu Y (2007) Specific detection of cysteine and homocysteine: recognizing one-methylene difference using fluorosurfactant-capped gold nanoparticles. Chem Commun 37:3871–3873CrossRefGoogle Scholar
  11. Ly TD, Laperche S, Brennan C, Vallari A, Ebel A, Hunt J, Martin L, Daghfal D, Schochetman G, Devare S (2004) Evaluation of the sensitivity and specificity of six HIV combined p24 antigen and antibody assays. J Virol Methods 122:185–194CrossRefGoogle Scholar
  12. Macara I, Kustin K, Cantley LC Jr (1980) Glutathione reduces cytoplasmic vanadate: mechanism and physiological implications. Biochim Biophys Acta 629:95–106CrossRefGoogle Scholar
  13. Maduraiveeran G, Ramaraj R (2011) Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH. J Nanopart Res 13:4267–4276CrossRefGoogle Scholar
  14. Pontoni G, Rotondo F, Spagnuolo G, Aurino MT, Cartèni-Farina M, Zappia V, Lama G (2000) Diagnosis and follow-up of cystinuria: use of proton magnetic resonance spectroscopy. Amino Acids 19:469–476CrossRefGoogle Scholar
  15. Quig D (1998) Cysteine metabolism and metal toxicity. Alt Med Rev 3:262–270Google Scholar
  16. Ramasarma T (2003) The emerging redox profile of vanadium. Proc Indian Natl Acad Sci B69:649–672Google Scholar
  17. Soares Netto LE, de Oliveira MA, Monteiro G, Demasi APD, Cussiol JRR, Discola KF, Demasi M, Silva GM, Alves SV, Faria VG, Horta BB (2007) Reactive cysteine in proteins: protein folding, antioxidant defense, redox signaling and more. Comp Biochem Physiol C 146:180–193CrossRefGoogle Scholar
  18. Summers MF, Henderson LE, Chance MR, Bess JW Jr, South TL, Blake PR, Sagi I, Perez-Alvarado G, Sowde RC III, Hare DR, Arthur LO (1992) Nucleocapsid zinc fingers detected in retroviruses: eXAFS studies of intact viruses and the solution-state structure of the nucleocapsid protein from HIV-1. Protein Sci 1:563–574CrossRefGoogle Scholar
  19. Tang S, Zhao J, Wang A, Viswanath R, Harma HR, Little RF, Yarchoan R, Stramer SL, Nyambi PN, Lee S, Wood O, Wong EY, Wang X, Hewlett IK (2010) Characterization of immune responses to capsid protein p24 of human immunodeficiency virus type 1 and implications for detection. Clin Vaccine Immunol 17:1244–1251CrossRefGoogle Scholar
  20. Teixeira MFS, Dockal ER, Cavalheiro ETG (2005) Sensor for cysteine based on oxovanadium (IV) complex of Salen modified carbon paste electrode. Sens Actuators B 106:619–625CrossRefGoogle Scholar
  21. Thiagarajan S, Umasankar Y, Chen S-M (2010) Functionalized multi walled carbon nanotubes nano biocomposite film for the amperometric detection of l-cysteine. J Nanosci Nanotechnol 10:702–710CrossRefGoogle Scholar
  22. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. 1. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81CrossRefGoogle Scholar
  23. Wriedt HA (1989) The O–V (oxygen–vanadium) system. Bull Alloy Phase Diagrams 10:271–276CrossRefGoogle Scholar
  24. Zhang M, Yu M, Li F, Zhu M, Li M, Gao Y, Li L, Liu Z, Zhang J, Zhang D, Yi T, Huang C (2007) A highly selective fluorescence turn-on sensor for cysteine/homocysteine and its application in bioimaging. J Am Chem Soc 129:10322–10323CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. G. BezerraJr.
    • 1
  • A. Barison
    • 2
  • V. S. Oliveira
    • 3
  • L. Foti
    • 4
  • M. A. Krieger
    • 4
  • R. Dhalia
    • 5
  • I. F. T. Viana
    • 5
  • W. H. Schreiner
    • 3
    Email author
  1. 1.Departamento Acadêmico de FísicaUniversidade Tecnológica Federal do ParanáCuritibaBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Instituto de Biologia Molecular do ParanáFundação Oswaldo CruzCuritibaBrazil
  5. 5.Centro de Pesquisas Aggeu MagalhãesFundação Oswaldo CruzRecifeBrazil

Personalised recommendations