Journal of Nanoparticle Research

, 14:1120

Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization

  • Jiafu Shi
  • Dong Yang
  • Zhongyi Jiang
  • Yanjun Jiang
  • Yanpeng Liang
  • Yuanyuan Zhu
  • Xiaoli Wang
  • Huihui Wang
Research Paper

Abstract

Simultaneous size control and surface functionalization of inorganic nanoparticles (NPs) are often desired for their efficient applications in (bio)catalysis, drug and/or DNA delivery, and photonics, etc. In this study, a novel strategy “bioadhesion-assisted bio-inspired mineralization (BABM)” was put forward to prepare titania nanoparticles (TiNPs) with tunable particle size and multiple surface functionality. Specifically, the initial formation and subsequent growth of TiNPs were enabled by arginine via bio-inspired mineralization, while the mineralization process was terminated through the addition of the pre-polymerized dopa (oligodopa). By adjusting the addition time of oligodopa, the size of TiNPs could be facilely tailored from ca. 30–350 nm; meanwhile, the surface of TiNPs could be functionalized by oligodopa through metal–catechol coordination interaction (a typical bioadhesion phenomenon). In other words, oligodopa coating could not only exquisitely control the size of TiNPs, but also render TiNPs surface multifunctional groups for secondary treatment such as conjugating proteins through amine-catechol adduct formation. Hopefully, this BABM approach will construct a versatile platform for green and facile synthesis of inorganic NPs, in particular transition metal oxide NPs.

Keywords

Titania nanoparticles Bio-inspired mineralization Bioadhesion Metal–organic coordination Size control Surface functionalization 

Supplementary material

11051_2012_1120_MOESM1_ESM.doc (765 kb)
Supplementary material 1 (DOC 765 kb)

References

  1. Amstad E, Textor M, Reimhult E (2011) Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3:2819–2843CrossRefGoogle Scholar
  2. Andersson M, Pedersen JS, Palmqvist AEC (2005) Silver nanoparticle formation in microemulsions acting both as template and reducing agent. Langmuir 21:11387–11396CrossRefGoogle Scholar
  3. Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  4. Belton D, Paine G, Patwardhan SV, Perry CC (2004) Towards an understanding of (bio) silicification: the role of amino acids and lysine oligomers in silicification. J Mater Chem 14:2231–2241CrossRefGoogle Scholar
  5. Bernecker A, Wieneke R, Riedel R, Seibt M, Geyer A, Steinem C (2009) Tailored synthetic polyamines for controlled biomimetic silica formation. J Am Chem Soc 132:1023–1031CrossRefGoogle Scholar
  6. Bernsmann F, Ponche A, Ringwald C, Hemmerlé J, Raya J, Bechinger B, Voegel JC, Schaaf P, Ball V (2009) Characterization of dopamine–melanin growth on silicon oxide. J Phys Chem C 113:8234–8242CrossRefGoogle Scholar
  7. Bernsmann F, Frisch B, Ringwaldand Vincent C (2010) Protein adsorption on dopamine-melanin films: Role of electrostatic interactions inferred from [zeta]-potential measurements versus chemisorption. J Colloid Interface Sci 344:54–60CrossRefGoogle Scholar
  8. Black KCL, Liu Z, Messersmith PB (2011) Catechol redox induced formation of metal core–polymer shell nanoparticles. Chem Mater 23:1130–1135CrossRefGoogle Scholar
  9. Cai KY, Hou YH, Hu Y, Zhao L, Luo Z, Shi YS, Lai M, Yang WH, Liu P (2011) Correlation of the cytotoxicity of TiO2 nanoparticles with different particle sizes on a sub-200-nm scale. Small 7:3026–3031CrossRefGoogle Scholar
  10. Chen G, Li M, Li F, Sun SR, Xia DG (2010) Protein- mediated synthesis of nanostructured titania with different polymorphs at room temperature. Adv Mater 22:1258–1262CrossRefGoogle Scholar
  11. Cho EB, Volkov DO, Sokolov I (2011) Ultrabright fluorescent silica mesoporous silica nanoparticles: control of particle size and dye loading. Adv Funct Mater 21:3129–3135CrossRefGoogle Scholar
  12. Creutz C, Chou MH (2008) Binding of catechols to mononuclear titanium(IV) and to 1-and 5-nm TiO2 nanoparticles. Inorg Chem 47:3509–3514CrossRefGoogle Scholar
  13. Ding SJ, Wang YM, Hong ZL, Lü XJ, Wan DY, Huang FQ (2011) Biomolecule-assisted route to prepare titania mesoporous hollow structures. Chem Eur J 17:11535–11541CrossRefGoogle Scholar
  14. d’Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T (2009) Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials. Angew Chem Int Ed 48:3914–3921CrossRefGoogle Scholar
  15. Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold–TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113:6454–6462CrossRefGoogle Scholar
  16. Du L, Furube A, Hara K, Katoh R, Tachiya M (2010) Mechanism of particle size effect on electron injection efficiency in ruthenium dye-sensitized TiO2 nanoparticle films. J Phys Chem C 114:8135–8143CrossRefGoogle Scholar
  17. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685CrossRefGoogle Scholar
  18. Ge J, Lu DN, Liu ZX, Liu Z (2009) Recent advances in nanostructured biocatalysts. Biochem Eng J 44:53–59CrossRefGoogle Scholar
  19. Gelman F, Blum J, Avnir D (2002) One-pot sequences of reactions with sol-gel entrapped opposing reagents: an enzyme and metal-complex catalysts. J Am Chem Soc 124:14460–14463CrossRefGoogle Scholar
  20. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395CrossRefGoogle Scholar
  21. Greco G, Panzella L, Gentile G, Errico ME, Carfagna C, Napolitano A, d’Ischia M (2011) A melanin-inspired pro-oxidant system for dopa (mine) polymerization: mimicking the natural casing process. Chem Commun 47:10308–10310CrossRefGoogle Scholar
  22. Grodzinski D (2011) Nanoparticle Trojan horses gallop from the lab into the clinic. Science 330:314–315Google Scholar
  23. Guo N, Di Benedetto SA, Tewari P, Lanagan MT, Ratner MA, Marks TJ (2010) Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide–polyolefin nanocomposites: experiment and theory. Chem Mater 22:1567–1578CrossRefGoogle Scholar
  24. Gurr JR, Wang ASS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73CrossRefGoogle Scholar
  25. He QJ, Shi JL (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21:5845–5855CrossRefGoogle Scholar
  26. Hussain SM, Braydich-Stolle LK, Schrand AM, Murdock RC, Yu KO, Mattie DM, Schlager JJ, Terrones M (2009) Toxicity evaluation for safe use of nanomaterials: recent achievements and technical challenges. Adv Mater 21:1549–1559CrossRefGoogle Scholar
  27. Irvine DJ (2011) One nanoparticle, one kill. Nat Mater 10:342–343CrossRefGoogle Scholar
  28. Jaber M, J-Fo Lambert (2009) A new nanocomposite: l-DOPA/laponite. J Phys Chem Lett 1:85–88CrossRefGoogle Scholar
  29. Jaber M, Bouchoucha M, Delmotte L, Méthivier C, Lambert JF (2011) The fate of l-DOPA in the presence of inorganic matrices vectorization or composite material formation? J Phys Chem C 115:19216–19225CrossRefGoogle Scholar
  30. Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84:406–414CrossRefGoogle Scholar
  31. Jiang YJ, Yang D, Zhang L, Li L, Sun QY, Zhang YF, Li J, Jiang ZY (2008) Biomimetic synthesis of titaniananoparticles induced by protamine. Dalton Trans 4165–4171Google Scholar
  32. Jiang YJ, Yang D, Zhang L, Sun QY, Sun XH, Li J, Jiang ZY (2009) Preparation of protamine–titania microcapsules through synergy between layer- by-layer assembly and biomimetic mineralization. Adv Funct Mater 19:150–156CrossRefGoogle Scholar
  33. Karlsson HL, Gustafsson J, Cronholm P (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188:112–118CrossRefGoogle Scholar
  34. Lee HY, Kale GM (2008) Hydrothermal synthesis and characterization of nano-TiO2. Int J Appl Ceram Technol 5:657–665CrossRefGoogle Scholar
  35. Lee BP, Dalsin JL, Messersmith PB (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules 3:1038–1047CrossRefGoogle Scholar
  36. Lee H, Rho J, Messersmith PB (2009) Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv Mater 21:431–434CrossRefGoogle Scholar
  37. Lin Q, Gourdon D, Sun CJ, Holten-Andersen N, Anderson TH, Waite JH, Israelachvili JN (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc Natl Acad Sci USA 104:3782–3786CrossRefGoogle Scholar
  38. Liu Y, Dadap J, Zimdars D, Eisenthal KB (1999) Study of interfacial charge-transfer complex on TiO2 particles in aqueous suspension by second-harmonic generation. J Phys Chem B 103:2480–2486CrossRefGoogle Scholar
  39. Luckarift HR, Dickerson MB, Sandhage KH, Spain JC (2006) Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643CrossRefGoogle Scholar
  40. Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432CrossRefGoogle Scholar
  41. Maurer-Jones MA, Lin YS, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4:3363–3373CrossRefGoogle Scholar
  42. McWhirter MJ, Bremer PJ, Lamont IL, McQuillan AJ (2003) Siderophore-mediated covalent bonding to metal (oxide) surfaces during biofilm initiation by pseudomonas a eruginosa bacteria. Langmuir 19:3575–3577CrossRefGoogle Scholar
  43. Meledandri CJ, Stolarczyk JK, Brougham DF (2011) Hierarchical gold-decorated magnetic nanoparticle clusters with controlled size. ACS Nano 5:1747–1755CrossRefGoogle Scholar
  44. Musumeci A, Gosztola D, Schiller T, Dimitrijevic NM, Mujica V, Martin D, Rajh T (2009) SERS of semiconducting nanoparticles (TiO2 hybrid composites). J Am Chem Soc 131:6040–6041CrossRefGoogle Scholar
  45. Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S (2003) Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells. J Phys Chem B 107:8607–8611CrossRefGoogle Scholar
  46. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar
  47. Ohmori K, Shono T, Hatakoshi Y, Yano T, Suzuki K (2011) Integrated synthetic strategy for higher catechin oligomers. Angew Chem Int Ed 50:4862–4867CrossRefGoogle Scholar
  48. Papov VV, Diamond TV, Biemann K, Waite JH (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J Biol Chem 270:20183–20192CrossRefGoogle Scholar
  49. Petrov AI, Volodkin DV, Sukhorukov GB (2005) Protein–calcium carbonate coprecipitation: a tool for protein encapsulation. Biotechnol Prog 21:918–925CrossRefGoogle Scholar
  50. Schlossbauer A, Warncke S, Gramlich PME, Kecht J, Manetto A, Carell T, Bein T (2010) A programmable DNA-based molecular valve for colloidal mesoporous silica. Angew Chem Int Ed 49:4734–4737CrossRefGoogle Scholar
  51. Shang W, Nuffer JH, Muñiz-Papandrea VA, Colón W, Siegel RW, Dordick JS (2009) Cytochrome c on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 5:470–476CrossRefGoogle Scholar
  52. Shields SP, Richards VN, Buhro WE (2010) Nucleation control of size and dispersity in aggregative nanoparticle growth. A study of the coarsening kinetics of thiolate-capped gold nanocrystals. Chem Mater 22:3212–3225CrossRefGoogle Scholar
  53. Stolarczyk JK, Ghosh S, Brougham DF (2009) Controlled growth of nanoparticle clusters through competitive stabilizer desorption. Angew Chem Int Ed 48:175–178CrossRefGoogle Scholar
  54. Sumerel JL, Yang W, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Biocatalytically templated synthesis of titanium dioxide. Chem Mater 15:4804–4809CrossRefGoogle Scholar
  55. Torres-Salas P, del Monte-Martinez A, Cutiño-Avila B, Rodriguez-Colinas B, Alcalde M, Ballesteros AO, Plou FJ (2011) Immobilized biocatalysts: novel approaches and tools for binding enzymes to supports. Adv Mater 23:5275–5282CrossRefGoogle Scholar
  56. Upritchard HG, Yang J, Bremer PJ, Lamont IL, McQuillan AJ (2007) Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals. Langmuir 23:7189–7195CrossRefGoogle Scholar
  57. Vinogradov VV, Agafonov AV, Vinogradov AV, Pillai KT, Pai RV, Mukerjee SK, Aggarwal SK (2011) Synthesis of organized mesoporous gamma-alumina templated with polymer–colloidal complex. J Sol-Gel Sci Technol 60:6–10CrossRefGoogle Scholar
  58. Waite JH, Qin XX (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40:2887–2893CrossRefGoogle Scholar
  59. Wright A, Gabaldon J, Burckel DB, Jiang YB, Tian ZR, Liu J, Brinker CJ, Fan H (2006) Hierarchically organized nanoparticle mesostructure arrays formed through hydrothermal self-assembly. Chem Mater 18:3034–3038CrossRefGoogle Scholar
  60. Wu CS, Lee CC, Wu CT, Yang YS, Ko FH (2011a) Size-modulated catalytic activity of enzyme–nanoparticle conjugates: a combined kinetic and theoretical study. Chem Commun 47:7446–7448CrossRefGoogle Scholar
  61. Wu JJ, Zhang L, Wang YX, Long YH, Gao H, Zhang XL, Zhao N, Cai YL, Xu J (2011b) Mussel-inspired chemistry for robust and surface modifiable multilayer films. Langmuir 27:13684–13691CrossRefGoogle Scholar
  62. Wu KCW, Yamauchi Y, Hong CY, Yang YH, Liang YH, Funatsu T, Tsunoda M (2011c) Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery. Chem Commun 47:5232–5234CrossRefGoogle Scholar
  63. Xu HL, Liu XK, Wang DY (2011) Interfacial basicity-guided formation of polydopamine hollow capsules in pristine O/W emulsions-towards understanding of emulsion template roles. Chem Mater 23:5105–5110CrossRefGoogle Scholar
  64. Yang LB, Jiang X, Ruan WD, Zhao B, Xu WQ, Lombardi JR (2008) Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J Phys Chem C 112:20095–20098CrossRefGoogle Scholar
  65. Yang LP, Phua SL, Teo JKH, Toh CL, Ma J, Lau SK, Lu XH (2011) A biomimetic approach to enhancing interfacial interaction: polydopamine-coated clay as reinforcement for epoxy resins. ACS Appl Mater Interfaces 3:3026–3032CrossRefGoogle Scholar
  66. Zhang L, Shi JF, Jiang ZY, Jiang YJ, Qiao SZ, Li J, Wang R, Meng RJ, Zhu YY, Zheng Y (2010) Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem 13:300–306CrossRefGoogle Scholar
  67. Zhang L, Shi JF, Jiang ZY, Jiang YJ, Meng RJ, Zhu YY, Liang YP, Zheng Y (2011) Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer. ACS Appl Mater Interfaces 3:597–650CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jiafu Shi
    • 1
  • Dong Yang
    • 1
  • Zhongyi Jiang
    • 1
  • Yanjun Jiang
    • 2
  • Yanpeng Liang
    • 1
  • Yuanyuan Zhu
    • 1
  • Xiaoli Wang
    • 1
  • Huihui Wang
    • 1
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Department of Bioengineering, School of Chemical EngineeringHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations