Advertisement

Journal of Nanoparticle Research

, 14:1106 | Cite as

Chemical composition dispersion in bi-metallic nanoparticles: semi-automated analysis using HAADF-STEM

  • T. EpicierEmail author
  • K. Sato
  • F. Tournus
  • T. Konno
Brief Communication

Abstract

We present a method using high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) to determine the chemical composition of bi-metallic nanoparticles. This method, which can be applied in a semi-automated way, allows large scale analysis with a statistical number of particles (several hundreds) in a short time. Once a calibration curve has been obtained, e.g., using energy-dispersive X-ray spectroscopy (EDX) measurements on a few particles, the HAADF integrated intensity of each particle can indeed be directly related to its chemical composition. After a theoretical description, this approach is applied to the case of iron–palladium nanoparticles (expected to be nearly stoichiometric) with a mean size of 8.3 nm. It will be shown that an accurate chemical composition histogram is obtained, i.e., the Fe content has been determined to be 49.0 at.% with a dispersion of 10.4 %. HAADF-STEM analysis represents a powerful alternative to fastidious single particle EDX measurements, for the compositional dispersion in alloy nanoparticles.

Keywords

Transmission electron microscopy Bi-metallic nanoparticles Chemical composition dispersion Scanning TEM STEM-HAADF 

Notes

Acknowledgments

This work was financially supported by the French-Japanese ElyT international laboratory project (Engineering—Lyon—Tohoku, http://www.elyt-lab.com).

References

  1. Abel KA, Boyer JC, Andrei CM, Van Veggel FCJM (2011) Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J Phys Chem Lett 2:185–189. doi: 10.1021/jz101593g CrossRefGoogle Scholar
  2. Acevedo D, Perez M, Epicier T, Kozeschnik E, Perrard F, Sourmail T (2008) Kinetics of precipitation and dissolution in model FeCV and FeCVNb alloy, and a microalloyed ultra high strength spring steel. In: New developments on metallurgy and applications on high strength steels, TMS Conference 2008, Buenos Aires, 26 May 2008Google Scholar
  3. Babonneau D, Lantiat D, Camelio S, Toudert J, Simonot L, Pailloux F, Denanot MF, Girardeau T (2008) Gold and silver nanoparticles embedded in dielectric-capping layers studied by HAADF-STEM. Eur Phys J Appl Phys 44:3–9. doi: 10.1051/epjap:2008051 CrossRefGoogle Scholar
  4. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423. doi: 10.1103/RevModPhys.77.371 CrossRefGoogle Scholar
  5. Blanc N, Tournus F, Dupuis V, Epicier T (2011) Measuring the L10 chemical order parameter of a single CoPt nanoparticle smaller than 4 nm. Phys Rev B 83:092403. doi: 10.1103/PhysRevB.83.092403 CrossRefGoogle Scholar
  6. Curley BC, Johnston RL, Young NP, Li ZY, Di Vece M, Palmer RE, Bleloch AL (2007) Combining theory and experiment to characterize the atomic structures of surface-deposited Au309 clusters. J Phys Chem C 111:17846–17851. doi: 10.1021/jp0713099 CrossRefGoogle Scholar
  7. Di Vece M, Bals S, Verbeeck J, Lievens P, Van Tendeloo G (2009) Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation. Phys Rev B 80:125420. doi: 10.1103/PhysRevB.80.125420 CrossRefGoogle Scholar
  8. Epicier T (2006) Transmission electron microscopy and nano-precipitation. Adv Eng Mater 8:1197–1201. doi: 10.1002/adem.200600185 CrossRefGoogle Scholar
  9. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. doi: 10.1021/cr040090g CrossRefGoogle Scholar
  10. Graoui H, Giorgio S, Henry CR (2001) Effect of the interface structure on the high-temperature morphology of supported metal clusters. Philos Mag B 81:1649–1658. doi: 10.1080/13642810108223109 CrossRefGoogle Scholar
  11. Jesson DE, Pennycook SJ (1995) Incoherent imaging of crystals using thermally scattered electrons. Proc R Soc Lond A 449:273–293. doi: 10.1098/rspa.1995.0044 CrossRefGoogle Scholar
  12. Kizuka T, Tanaka N (1997) Atomic process of epitaxial growth of gold on magnesium oxide studied by cross-sectional time-resolved high-resolution electron microscopy. Phys Rev B 56:R10079–R10082. doi: 10.1103/PhysRevB.56.R10079 CrossRefGoogle Scholar
  13. Klenov DO, Findlay SD, Allen LJ, Stemmer S (2007) Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys Rev B 76:014111. doi: 10.1103/PhysRevB.76.014111 CrossRefGoogle Scholar
  14. LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100:206101. doi: 10.1103/PhysRevLett.100.206101 CrossRefGoogle Scholar
  15. LeBeau JM, Finlay SD, Allen LJ, Stemmer S (2010) Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10:4405–4408. doi: 10.1021/nl102025s CrossRefGoogle Scholar
  16. Lee JG, Lee J, Tanaka T, Mori H (2006) In situ HREM observation of crystalline-to-gas transition in nanometer-sized Ag particles. Phys Rev Lett 96:075504. doi: 10.1103/PhysRevLett.96.075504 CrossRefGoogle Scholar
  17. Lee YW, Kim M, Hwan Kim Z, Woo Han S (2009) One-step synthesis of Au@Pd core-shell nanooctahedron. J Am Chem Soc 131:17036. doi: 10.1021/ja905603p CrossRefGoogle Scholar
  18. Li BQ, Zuo JM (2005) Structure and shape transformation from multiply twinned particles to epitaxial nanocrystals: importance of interface on the structure of Ag nanoparticles. Phys Rev B 72:085434. doi: 10.1103/PhysRevB.72.085434 CrossRefGoogle Scholar
  19. Li ZY, Young NP, Di Vece M, Palomba S, Palmer RE, Bleloch AL, Curley BC, Johnston RL, Jiang J, Yuan J (2008) Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451:46–48. doi: 10.1038/nature06470 CrossRefGoogle Scholar
  20. Maccagnano-Zacher SE, Mkhoyan KA, Kirkland EJ, Silcox J (2008) Effects of tilt on high-resolution ADF-STEM imaging. Ultramicroscopy 108:718–726. doi: 10.1016/j.ultramic.2007.11.003 CrossRefGoogle Scholar
  21. Mkhoyan KA, Maccagnano-Zacher SE, Kirkland EJ, Silcox J (2008) Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108:791–803. doi: 10.1016/j.ultramic.2008.01.007 CrossRefGoogle Scholar
  22. Molina SI, Sales DL, Galindo PL, Fuster D, González Y, Alén B, González L, Varela M, Pennycook SJ (2009) Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109:172–176. doi: 10.1016/j.ultramic.2008.10.008 CrossRefGoogle Scholar
  23. Oshima Y, Hashimoto Y, Tanishiro Y, Takayanagi K, Sawada H, Kaneyama T, Kondo Y, Hashikawa N, Asayama K (2010) Detection of arsenic dopant atoms in a silicon crystal using a spherical aberration corrected scanning transmission electron microscope. Phys Rev B 81:035317. doi: 10.1103/PhysRevB.81.035317 CrossRefGoogle Scholar
  24. Sato K, Hirotsu Y, Mori H, Wang Z, Hirayama T (2005) Long-range order parameter of single L10-FePd nanoparticle determined by nanobeam electron diffraction: particle size dependence of the order parameter. J Appl Phys 98:024308. doi: 10.1063/1.1985973 CrossRefGoogle Scholar
  25. Sato K, Konno TJ, Hirotsu Y (2009) Atomic structure imaging of L10-type FePd nanoparticles by spherical aberration corrected high-resolution transmission electron microscopy. J Appl Phys 105:034308. doi: 10.1063/1.3074505 CrossRefGoogle Scholar
  26. Sato K, Wen JG, Zuo JM (2009) Intermetallic ordering and structure in Fe-Pd alloy nanoparticles. J Appl Phys 105:093509. doi: 10.1063/1.3122601 CrossRefGoogle Scholar
  27. Shima H, Oikawa K, Fujita A, Fukamichi K, Ishida K, Sakuma A (2004) Lattice axial ratio and large uniaxial magnetocrystalline anisotropy in L10-type FePd single crystals prepared under compressive stress. Phys Rev B 70:224408. doi: 10.1103/PhysRevB.70.224408 CrossRefGoogle Scholar
  28. Silly F, Castell MR (2005) Selecting the shape of supported metal nanocrystals: Pd huts, hexagons, or pyramids on SrTiO3(001). Phys Rev Lett 94:046103. doi: 10.1103/PhysRevLett.94.046103 CrossRefGoogle Scholar
  29. Treacy MMJ, Rice SB (1989) Catalyst particle sizes from Rutherford scattered intensities. J Microsc 156:211–234. doi: 10.1111/j.1365-2818.1989.tb02920.x CrossRefGoogle Scholar
  30. Treacy MMJ (1999) Pt agglomeration and entombment in single channel zeolites: Pt/LTL. Microporous Mesoporous Mater 28:271–292. doi: 10.1016/S1387-1811(98)00243-1 CrossRefGoogle Scholar
  31. Voyles PM, Muller DA, Grazul JL, Citrin PH, Gossmann JL (2002) Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature (London) 416:826–829. doi: 10.1038/416826a CrossRefGoogle Scholar
  32. Wang ZW, Toikkanen O, Yin F, Li ZY, Quinn BM, Palmer RE (2010) Counting the atoms in supported, monolayer-protected gold clusters. J Am Chem Soc 132:2854–2855. doi: 10.1021/ja909598g CrossRefGoogle Scholar
  33. Young NP, Li ZY, Chen Y, Palomba S, Di Vece M, Palmer RE (2008) Weighing supported nanoparticles: size-selected clusters as mass standards in nanometrology. Phys Rev Lett 101:246103. doi: 10.1103/PhysRevLett.101.246103 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.MATEIS CNRS UMR5510, Bat. Blaise PascalINSA-LyonVilleurbanne CedexFrance
  2. 2.LPMCN, UMR 5586 CNRS & Université de LyonUniversité Lyon 1Villeurbanne CedexFrance
  3. 3.Material Processing and Characterization DivisionInstitute for Materials Research, Tohoku UniversitySendaiJapan

Personalised recommendations