Advertisement

Journal of Nanoparticle Research

, 14:1096 | Cite as

Characterisation and catalytic properties of Ni, Co, Ce and Ru nanoparticles in mesoporous carbon spheres

  • Francisco A. A. Barros
  • Antonio J. R. Castro
  • Josue M. Filho
  • Bartolomeu C. Viana
  • Adriana Campos
  • Alcineia C. Oliveira
Research Paper

Abstract

Ni, Co, Ce and Ru nanoparticles were inserted into templated carbon using a nanocasting technique and evaluated for the dehydration of glycerol. NiO and CeO2 preferentially yielded 5 nm uniformly sized particles that filled the mesoporous carbon via a geometric confinement effect. Ru generated Ruo and RuO2 nanoparticles that selectively migrated towards the carbon surface and did not undergo sintering, whereas Co nanoparticles containing CoO and Co3O4 showed the opposite behaviour. The stabilising effects of the Ce and Ru nanoparticles on the carbon matrix effectively prevented the aggregation of small particles, resulting in superior catalytic performance in glycerol dehydration.

Keywords

Oxides CeO2 Nanoparticles Nanocasting Glycerol Transformation 

Notes

Acknowledgments

The authors are grateful for financial support from CNPq for this research project (CNPq/482364/2010-6 and 472561/2010-3). The authors would like to acknowledge CETENE for its assistance with the HRTEM measurements.

References

  1. Balaraju M, Rekh V, Prabhavathi Devi BLA, Prasad RBN, Sai Prasad PS, Lingaiah N (2010) Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol. Appl Catal A 384:107–114CrossRefGoogle Scholar
  2. Bolado S, Treviño RE, García-Cubero MT, González-Benito G (2010) Glycerol hydrogenolysis to 1,2 propanediol over Ru/C catalyst. Catal Commun 12:122–126CrossRefGoogle Scholar
  3. Cao M, Miyabayashi K, Shen Z, Ebitani K, Miyake M (2011) Olefin hydrogenation catalysis of platinum nanocrystals with different shapes. J Nanopart Res 13:5147–5156CrossRefGoogle Scholar
  4. de Sousa HSA, Barros FAA, Vasconcelos SJS, Filho JM, Lima CL, Oliveira AC, Ayala AP, Junior MC, Oliveira AC (2011) Ternary composites for glycerol conversion: the influence of structural and textural properties on catalytic activity. Appl Catal A 406:63–72CrossRefGoogle Scholar
  5. de Sousa FF, de Sousa HSA, Oliveira AC, Junior MC, Ayala AP, Barros EB, Viana BC, Filho JM, Oliveira AC (2012) Nanostructured Ni-containing spinel oxides for the dry reforming of methane: effect of the presence of cobalt and nickel on the deactivation behaviour of catalysts. Int J Hydrogen Energy 37:3201–3212CrossRefGoogle Scholar
  6. Deshmukh AA, Mhlang SD, Coville NJ (2010) Carbon spheres. Mater Sci Eng R 70:1–28CrossRefGoogle Scholar
  7. Fuertes AB, Tartaj P (2007) Monodisperse carbon–polymer mesoporous spheres with magnetic functionality and adjustable pore-size distribution. Small 3(2):275–279CrossRefGoogle Scholar
  8. Ghosh B, Dutta H, Pradhana SK (2009) Microstructure characterization of nanocrystalline Ni3C synthesized by high-energy ball milling. J Alloys Compd 479:193–200CrossRefGoogle Scholar
  9. Guo X, Liu X, Xu B, Dou T (2009) Synthesis and characterization of carbon sphere-silica core–shell structure and hollow silica spheres. Colloids Surf A 345:141–146CrossRefGoogle Scholar
  10. Guo Q, Guo X, Tian Q (2010) Optionally ultra-fast synthesis of CoO/Co3O4 particles using CoCl2 solution via a versatile spray roasting method. Adv Powder Technol 21:529–533CrossRefGoogle Scholar
  11. Haddad PS, Rocha TR, Souza EA, Martins TM, Knobel M, Zanchet D (2009) Interplay between crystallization and particle growth during the isothermal annealing of colloidal iron oxide nanoparticles. J Colloid Interface Sci 339:344–350CrossRefGoogle Scholar
  12. Jiang D, Zhang M, Li G, Jiang H (2012) Preparation and evaluation of MnOx–CeO2 nanospheres via a green route. Catal Commun 17:59–63CrossRefGoogle Scholar
  13. Kepinski L (1992) Inhibiting effect of metal-support reaction on carbonization of Ni/SiO2 films. Carbon 30:949–955CrossRefGoogle Scholar
  14. Li C-M, Robertson IM, Jenkins ML, Hutchison JL, Doole RC (2005) In situ TEM observation of the nucleation and growth of silver oxide nanoparticles. Micron 36:9–15CrossRefGoogle Scholar
  15. Li X, Dhanabalan A, Wang C (2011) Enhanced electrochemical performance of porous NiO–Ni nanocomposite anode for lithium ion batteries. J Power Sources 196:9625–9630CrossRefGoogle Scholar
  16. Li Y, Lan G, Wang H, Tang H, Yan X, Liu H (2012) Controlled synthesis of highly dispersed semi-embedded ruthenium nanoparticles in porous carbon framework with more exposed active sites. Catal Commun 20:29–35CrossRefGoogle Scholar
  17. Lima CL, Vasconcelos SJS, Filho JM, Neto BC, Rocha MGC, Bargiela P, Oliveira AC (2011) Nanocasted oxides for gas phase glycerol conversion. Appl Catal A 399:50–62CrossRefGoogle Scholar
  18. Liu ZG, Guo X, Li Y-Y, Shen D-H, Gan J, Tian M (2011) Metalloporphyrins immobilized on core-shell CeO2@SiO2 nanoparticles prepared by a double-coating method for oxidation of diphenyl methane. Appl Catal A. Gen 413–441:30–35Google Scholar
  19. Lopes I, El Hassan N, Guerba H, Wallez G, Davidson A (2006) Size-induced structural modifications affecting Co3O4 nanoparticles patterned in SBA-15 silicas. Chem Mater Lett 18:5826–5828CrossRefGoogle Scholar
  20. Mar SK, Chen CS, Huang YS, Tiong KK (1995) Characterization of RuO, thin films by Raman spectroscopy. Appl Surf Sci 90:497–504CrossRefGoogle Scholar
  21. Papa F, Balint I, Negrila C, Miyazaki A (2011) Morphology and chemical state of PVP-protected Pt, Pt–Cu, and Pt–Ag nanoparticles prepared by alkaline polyol method. J Nanopart Res 13:5057–5064CrossRefGoogle Scholar
  22. Pauleau Y, Thiery F, Latrasse L, Du SN (2004) Characteristics of copper/carbon and nickel/carbon composite films produced by microwave plasma-assisted deposition techniques from argon–methane gas mixtures. Surf Coat Technol 188–189:484–488CrossRefGoogle Scholar
  23. Pinheiro AL, Pinheiro AN, Valentini A, de Sousa FF, de Sousa JR, Rocha MGC, Bargiela P, Oliveira AC (2009) Analysis of coke deposition and study of the structural features of MAl2O4 catalysts for the dry reforming methane. Catal Commun 11:11–14CrossRefGoogle Scholar
  24. Pola J, Urbanová M, Pokorná D, Subrt J, Bakardjieva S, Bezdicka P, Bastl Z (2010) IR laser-induced formation of amorphous Co–C films with crystalline Co, Co2C and Co3C nanograins in a graphitic shell. J Photochem Photobiol A 210:153–161CrossRefGoogle Scholar
  25. Ryneveld E, Mahomed AS, Heerden Pieter S, Green MJ, Friedrich HB (2011) A catalytic route to lower alcohols from glycerol using Ni-supported catalysts. Green Chem 13:1819–1827CrossRefGoogle Scholar
  26. Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg S (2011) Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM. J Catal 281:147–155CrossRefGoogle Scholar
  27. Shen L, Feng Y, Yin H, Wang A, Yu L, Jiang T, Shen Y, Wu Z (2011) Gas phase dehydration of glycerol catalyzed by rutile TiO2-supported heteropolyacids. J Ind Eng Chem 17:484–492Google Scholar
  28. Tang CW, Wang CB, Chien SH (2008) Characterization of cobalt oxides studied by FT-IR Raman TPR and TG-MS. Thermochim Acta 473:68–73CrossRefGoogle Scholar
  29. Uglov VV, Kuleshov AK, Samtsov MP, Astashinsakaya MV (2006) Raman light scattering in hydrogenated metal-carbon composite films. J Appl Spectros 73:393–3883CrossRefGoogle Scholar
  30. Viana BC, Ferreira OP, Souza Filho AG, Rodrigues CM, Moraes SG, Filho JM, Alves OL (2009) Decorating titanate nanotubes with CeO2 nanoparticles. J Phys Chem C 113:20234–20239CrossRefGoogle Scholar
  31. Wang Y, Wang Y, Ren J, Mi Y, Zhang F, Li C, Liu X, Guo Y, Guo Y, Lu G (2010) Synthesis of morphology-controllable mesoporous Co3O4 and CeO2. J Solid State Chem 183:277–284CrossRefGoogle Scholar
  32. Wu H-C, Hong C-T, Chiu H-T, Li Y-Y (2009) Continuous synthesis of carbon spheres by a non-catalyst vertical chemical vapor deposition. Diam Relat Mater 18:601–605CrossRefGoogle Scholar
  33. Yu Q, Wu X, Tang C, Qi L, Liu B, Gao F, Sun K, Dong L, Chen Y (2011) Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO2–MOx (M = Mg2+, Al3+, Si4+) mixed oxides for CO oxidation. J Colloid Interface Sci 354:341–352CrossRefGoogle Scholar
  34. Zheng J, Zhang Y, Song X, Li X (2011) Formation of polyhedral ceria nanoparticles with enhanced catalytic CO oxidation activity in thermal plasma via a hydrogen mediated shape control mechanism. J Nanopart Res 13:4445–4450CrossRefGoogle Scholar
  35. Zhou J, He J, Zhang C, Wang T, Sun D, Di Z, Wang D (2010) Mesoporous carbon spheres with uniformly penetrating channels and their use as a supercapacitor electrode material. Mater Character 61:31–38CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Francisco A. A. Barros
    • 1
  • Antonio J. R. Castro
    • 2
  • Josue M. Filho
    • 2
  • Bartolomeu C. Viana
    • 3
  • Adriana Campos
    • 4
  • Alcineia C. Oliveira
    • 1
  1. 1.Departamento de Química Analítica e Físico-Química, Langmuir Lab de Adsorção e CataliseUniversidade Federal do CearáFortalezaBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Departamento de FísicaUniversidade Federal do PiauiTeresinaBrazil
  4. 4.CETENE Av. Prof. Luiz Freire, Cidade UniversitáriaRecifeBrazil

Personalised recommendations