A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

  • Xuan Liu
  • Haruhiko Ito
  • Eiko Torikai
Research Paper


We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n ,  Na n ,  K n ,  Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.


Spin cluster Self-organization Spin polarization Non-wetting Cold atoms 



We thank Prof. Sudha Srinivas of Northeastern Illinois University for her pioneering work on spin clusters and valuable comments on this study.


  1. Affronte M (2009) Molecular nanomagnets for information technologies. J Mater Chem 19:1731–1737. doi: 10.1039/b809251f CrossRefGoogle Scholar
  2. Barth JV, Costantini G, Kern K (2005) Engineering atomic and molecular nanostructures at surfaces. Nature 437:671–679. doi: 10.1038/nature04166 CrossRefGoogle Scholar
  3. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi: 10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  4. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. doi: 10.1063/1.464913 CrossRefGoogle Scholar
  5. Cahn JW (1977) Critical point wetting. J Chem Phys 66:3667–3672. doi: 10.1063/1.434402 CrossRefGoogle Scholar
  6. Duan TC, Nakano T, Nozue Y (2007) Magnetic and optical properties of Rb and Cs clusters incorporated into Zeolite A. e-J Surf Sci Nanotech 5:6–11CrossRefGoogle Scholar
  7. Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F, Pillet P (1998) Formation of cold Cs2 molecules through photoassociation. Phys Rev Lett 80:4402–4405. doi: 10.1103/PhysRevLett.80.4402 CrossRefGoogle Scholar
  8. Florez E, Fuentealba P (2009) A theoretical study of alkali metal atomic clusters: from Lin to Csn (n = 2 − 8). Int J Quant Chem 109:1080–1093. doi: 10.1002/qua.21906 CrossRefGoogle Scholar
  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Rob MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc., WallingfordGoogle Scholar
  10. Gambardella P (2006) Magnetic nanostructures: quantum chains with a spin. Nat Mater 5:431–432. doi: 10.1038/nmat1662 CrossRefGoogle Scholar
  11. Goll E, Werner H-J, Stoll H, Leininger T, Gori-Giorgi P, Savin A (2006) A short-range gradient-corrected spin density functional in combination with long-range coupled-cluster methods: application to alkali-metal rare-gas dimers. Chem Phys 329:276–282. doi: 10.1016/j.chemphys.2006.05.020 CrossRefGoogle Scholar
  12. Handy NC, Schaefer HF (1984) On the evaluation of analytic energy derivatives for correlated wave functions. J Chem Phys 81:5031–5033. doi: 10.1063/1.447489 CrossRefGoogle Scholar
  13. Happer W (1972) Optical pumping. Rev Mod Phys 44:169–249. doi: 10.1103/RevModPhys.44.169 CrossRefGoogle Scholar
  14. Lee S-H, Broholm C, Ratcliff W, Gasparovic G, Huang Q, Kim TH, Cheong S-W (2002) Emergent excitations in a geometrically frustrated magnet. Nature 418:856–858. doi: 10.1038/nature00964 CrossRefGoogle Scholar
  15. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi: 10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  16. Meier F, Levy J, Loss D (2003) Quantum computing with spin cluster qubits. Phys Rev Lett 90:047901. doi: 10.1103/PhysRevLett.90.047901 CrossRefGoogle Scholar
  17. Mielich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206. doi: 10.1016/0009-2614(89)87234-3 CrossRefGoogle Scholar
  18. Nicklass A, Dolg M, Stoll H, Preuss H (1995) Ab initio energyadjusted pseudopotentials for the noble gases Ne through Xe: calculation of atomic dipole and quadrupole polarizabilities. J Chem Phys 102:8942–8952. doi: 10.1063/1.468948 CrossRefGoogle Scholar
  19. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  20. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539. doi: 10.1103/PhysRevB.54.16533 CrossRefGoogle Scholar
  21. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249. doi: 10.1103/PhysRevB.45.13244 CrossRefGoogle Scholar
  22. Raab E, Prentiss M, Cable A, Chu S, Pritchard D (1987) Trapping of neutral-sodium atoms with radiation pressure. Phys Rev Lett 59:2631–2634. doi: 10.1103/PhysRevLett.59.2631 CrossRefGoogle Scholar
  23. Srinivas S, Torikai E (2007) A density-functional study of the structure and self-organization in spin clusters. J Magn Magn Mater 310:2390–2392. doi: 10.1016/j.jmmm.2006.10.747 CrossRefGoogle Scholar
  24. Torikai E (2000) Study of the self-organization of spin-polarized atomic clusters on a solid rare gas surface. RIKEN Rev 27:82–85Google Scholar
  25. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations—potentials for main group elements Na to Bi. J Chem Phys 82:284–298. doi: 10.1063/1.448800 CrossRefGoogle Scholar
  26. Wang B, Han Y, Xiao J, Yang X, Zhang C, Wang H, Xiao M, Peng K (2007) Preparation and determination of spin-polarized states in multi-Zeeman-sublevel atoms. Phys Rev A 75:051801. doi: 10.1103/PhysRevA.75.051801 CrossRefGoogle Scholar
  27. Zuchowski PS, Hutson JM (2010) Reactions of ultracold alkali-metal dimers. Phys Rev A 81:060703. doi: 10.1103/PhysRevA.81.060703 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of TechnologyYokohamaJapan
  2. 2.Interdisciplinary Graduate School of Medicine and Engineering, University of YamanashiKofuJapan

Personalised recommendations