Advertisement

An efficient visible and UV-light-activated B–N-codoped TiO2 photocatalytic film for solar depollution prepared via a green method

  • Qing Chi Xu
  • Yan Zhang
  • Ziming He
  • Say Chye Joachim LooEmail author
  • Timothy Thatt Yang TanEmail author
Research Paper

Abstract

This work reports an efficient visible and UV-light-activated boron and nitrogen codoped TiO2 porous film prepared via a “green” and direct coating approach. Such photocatalyst is highly promising for solar depollution application due to its efficient photocatalytic activities in both visible and UV spectrum. The preparation method avoids the use of organic solvents, which are usually more expensive and hazardous compared with water. Using stearic acid as the model organic pollutant, the visible-light photocatalytic activity of optimized porous B–N-codoped TiO2 film (p-3B–N–TiO2) is 3 times higher than that of porous N-doped TiO2 (p-N–TiO2) film, while its UV photocatalytic activity is almost double that of p-N–TiO2 film and comparable to that of porous TiO2. The enhancement in photocatalytic activity is attributed to higher surface area due to the porous structure, improved visible-light absorption attributed to interstitially substituted boron atoms, and coexistence of boron and nitrogen dopants which may reduce Ti3+ recombination centers.

Keywords

Co-doped TiO2 Boron Nitrogen Photocatalysis Solar depollution 

Notes

Acknowledgments

Financial support from Nanyang Technological University AcRF Tier 1 RG29/07 is acknowledged.

References

  1. An X, Meng G, Zhang M, Tian Y, Sun S, Zhang L (2006) Synthesis and optical absorption property of ordered macroporous titania film doped with Ag nanoparticles. Mater Lett 60:2586–2589. doi: 10.1016/j.matlet.2005.10.117 CrossRefGoogle Scholar
  2. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. doi: 10.1126/science.1061051 CrossRefGoogle Scholar
  3. Batzill M, Morales EH, Diebold U (2006) Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett 96:026103(1)–026103(4). doi: 10.1103/PhysRevLett.96.026103 CrossRefGoogle Scholar
  4. Burda C, Lou Y, Chen X, Samia AC, Stout I, Gole JL (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051. doi: 10.1021/nl034332o CrossRefGoogle Scholar
  5. Chen D, Yang D, Wang Q, Jiang Z (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res 45:4110–4116. doi: 10.1021/ie0600902 CrossRefGoogle Scholar
  6. Daude N, Gout C, Jouanin C (1977) Electronic band-structure of titanium-dioxide. Phys Rev B 15:3229–3235. doi: 10.1103/PhysRevB.15.3229 CrossRefGoogle Scholar
  7. Di Paola A, Bellardita M, Ceccato R, Palmisano L, Parrino F (2009) Highly active photocatalytic TiO2 powders obtained by thermohydrolysis of TiCl4 in water. J Phys Chem C 113:15166–15174. doi: 10.1021/jp904673e CrossRefGoogle Scholar
  8. Di Valentin C, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J Phys Chem B 109:11414–11419. doi: 10.1021/jp051756t CrossRefGoogle Scholar
  9. Doong RA, Chang SM, Hung YC, Kao IL (2007) Preparation of highly ordered titanium dioxide porous films: characterization and photocatalytic activity. Sep Purif Technol 58:192–199. doi: 10.1016/j.seppur.2007.07.029 CrossRefGoogle Scholar
  10. Feng XJ, Zhai J, Jiang L (2005) The fabrication and switchable superhydrophobicity of TiO2 nanorod films. Angew Chem Int Ed 44:5115–5118. doi: 10.1002/anie.200501337 CrossRefGoogle Scholar
  11. Feng N, Zheng A, Wang Q, Ren P, Gao X, Liu SB, Shen Z, Chen T, Deng F (2011) Boron environments in B-doped and (B, N)-codoped TiO2 photocatalysts: a combined solid-state NMR and theoretical calculation study. J Phys Chem C 115:2709–2719. doi: 10.1021/jp108008a CrossRefGoogle Scholar
  12. Finazzi E, Valentin CD, Pacchioni G (2009) Boron-doped anatase TiO2: pure and hybrid DFT calculations. J Phys Chem C 113:220–228. doi: 10.1021/jp8072238 CrossRefGoogle Scholar
  13. Gao YF, Masuda Y, Koumoto K (2004a) Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. Langmuir 20:3188–3194. doi: 10.1021/la0303207 CrossRefGoogle Scholar
  14. Gao YF, Masuda Y, Koumoto K (2004b) Micropatterning of TiO2 thin film in an aqueous peroxotitanate solution. Chem Mater 16:1062–1067. doi: 10.1021/cm030543i CrossRefGoogle Scholar
  15. Gombac V, DeRogatis L, Gasparotto A, Vicario G, Montini T, Barreca D, Balducci G, Fornasiero P, Tondello E, Graziani M (2007) TiO2 nanopowders doped with boron and nitrogen for photocatalytic applications. Chem Phys 339:111–113. doi: 10.1016/j.chemphys.2007.05.024 CrossRefGoogle Scholar
  16. He ZM, Guai GH, Liu L, Guo CX, Loo JSC, Li CM, Tan TTY (2011a) Nanostructure control of graphene-composited TiO2 by a one-step solvothermal approach for high performance dye-sensitized solar cells. Nanoscale 3(11):4613–4616. doi: 10.1039/C1NR11300C CrossRefGoogle Scholar
  17. He ZM, Xu QC, Tan TTY (2011b) Understanding bactericidal performance on ambient light activated TiO2–InVO4 nanostructured films. Nanoscale 3(12):4977–4983. doi: 10.1039/c1nr11126d CrossRefGoogle Scholar
  18. In S, Oriov A, Berg R, Garcia F, Pedrosa-Jimenez S, Tikhov MS, Wright DS, Lambert RM (2007) Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts. J Am Chem Soc 129:13790–13791. doi: 10.1021/ja0749237 CrossRefGoogle Scholar
  19. Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2−xNx powders. J Phys Chem B 107:5483–5486. doi: 10.1021/jp030133h CrossRefGoogle Scholar
  20. Kawahara T, Konishi Y, Tada H, Tohge N, Nishii J, Ito S (2002) A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. Angew Chem Int Ed 41:2811–2813. doi: 10.1002/1521-3773(20020802)41:15<2811:AID-ANIE2811>3.0.CO;2-# CrossRefGoogle Scholar
  21. Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245. doi: 10.1126/science.1077386 CrossRefGoogle Scholar
  22. Kho YK, Iwase A, Teoh WY, Mädler L, Kudo A, Amal R (2010) Photocatalytic H2 evolution over TiO2 nanoparticles. The synergistic effect of anatase and rutile. J Phys Chem C 114:2821–2829. doi: 10.1021/jp910810r CrossRefGoogle Scholar
  23. Krylova GV, Gnatyuk YI, Smirnova NP, Eremenko AM, Gun’ko VM (2009) Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol–gel template method. J Sol-Gel Sci Technol 50:216–228. doi: 10.1007/s10971-009-1954-x CrossRefGoogle Scholar
  24. Lettmann C, Hindenbrand K, Kisch H, Macyk W, Maier WF (2001) Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl Catal B 32:215–227. doi: 10.1016/S0926-3373(01)00141-2 CrossRefGoogle Scholar
  25. Li D, Haneda H, Hishita S, Ohashi N (2005) Visible-light-driven N–F-codoped TiO2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization. Chem Mater 17:2588–2595. doi: 10.1021/cm049100k CrossRefGoogle Scholar
  26. Ling Q, Sun J, Zhou Q (2008) Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen. Appl Surf Sci 254:3236–3241. doi: 10.1016/j.apsusc.2007.11.001 CrossRefGoogle Scholar
  27. Liu G, Zhao Y, Sun C, Li F, Lu GQ, Cheng HM (2008) Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2. Angew Chem Int Ed 47:4516–4520. doi: 10.1002/anie.200705633 CrossRefGoogle Scholar
  28. Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J Am Chem Soc 128:15666–15671. doi: 10.1021/ja064164c CrossRefGoogle Scholar
  29. Pore V, Ritala M, Leskela M, Areva S, Jarn M, Jarnstrom J (2007) H2S modified atomic layer deposition process for photocatalytic TiO2 thin films. J Mater Chem 17:1361–1371. doi: 10.1039/b617307a CrossRefGoogle Scholar
  30. Qiu X, Zhao Y, Burda C (2007) Synthesis and characterization of nitrogen-doped group IVB visible-light-photoactive metal oxide nanoparticles. Adv Mater 19:3995–3999. doi: 10.1002/adma.200700511 CrossRefGoogle Scholar
  31. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 115:5057–5060. doi: 10.1002/anie.200351577 CrossRefGoogle Scholar
  32. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349–6353. doi: 10.1021/cm052047v CrossRefGoogle Scholar
  33. Tian HJ, Hu LH, Zhang CN, Mo L, Li WX, Sheng J, Dai SY (2012) Superior energy band structure and retarded charge recombination for Anatase N, B codoped nano-crystalline TiO2 anodes in dye-sensitized solar cells. J Mater Chem 22:9123–9130. doi: 10.1039/c2jm16896k CrossRefGoogle Scholar
  34. Xiang QJ, Yu JG, Jaroniec M (2011a) Nitrogen and sulfur co-doped TiO2 nanosheets with exposed 001 facets: synthesis, characterization and visible-light photocatalytic activity. Phys Chem Chem Phys 13:4853–4861. doi: 10.1039/C0CP01459A CrossRefGoogle Scholar
  35. Xiang QJ, Yu JG, Wang WG, Jaroniec M (2011b) Nitrogen self-doped nanosized TiO2 sheets with exposed 001 facets for enhanced visible-light photocatalytic activity. Chem Commun 47:6906–6908. doi: 10.1039/C1CC11740H CrossRefGoogle Scholar
  36. Xiang QJ, Yu JG, Wong PK (2011c) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloid Interface Sci 357:163–167. doi: 10.1016/j.jcis.2011.01.093 CrossRefGoogle Scholar
  37. Xu JH, Li J, Dai WL, Cao Y, Li H, Fan K (2008) Simple fabrication of twist-like helix N, S-codoped titania photocatalyst with visible-light response. Appl Catal B 79:72–80. doi: 10.1016/j.apcatb.2007.10.008 CrossRefGoogle Scholar
  38. Xu QC, Wellia DV, Amal R, Liao DW, Loo JSC, Tan TTY (2010) Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film. Nanoscale 2(7):1122–1127. doi: 10.1039/C0NR00105H CrossRefGoogle Scholar
  39. Xu QC, Wellia DV, Ng YN, Amal R, Tan TTY (2011a) Synthesis of porous and visible-light absorbing Bi2WO6/TiO2 heterojunction films with improved photoelectrochemical and photocatalytic performances. J Phys Chem C 115:7419–7428. doi: 10.1021/jp1090137 CrossRefGoogle Scholar
  40. Xu QC, Wellia DV, Yan S, Liao DW, Lim TM, Tan TTY (2011b) Enhanced photocatalytic activity of C-N-codoped TiO2 films prepared via an organic-free approach. J Hazard Mater 188:172–180. doi: 10.1016/j.jhazmat.2011.01.088 CrossRefGoogle Scholar
  41. Yang XX, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K (2006) Synthesis of visible-light-active TiO2 based photocatalysts by carbon and nitrogen doping. J Catal 260:128–133. doi: 10.1016/j.jcat.2008.09.016 CrossRefGoogle Scholar
  42. Yu JC, Yu J, Ho W, Jiang Z (2002a) Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 14:3808–3816. doi: 10.1021/cm020027c CrossRefGoogle Scholar
  43. Yu JC, Yu J, Tang HY, Zhang LZ (2002b) Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films. J Mater Chem 12:81–85. doi: 10.1039/B102909F CrossRefGoogle Scholar
  44. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J Phys Chem B 107:13871–13879. doi: 10.1021/jp036158y CrossRefGoogle Scholar
  45. Zaleska A, Sobczak JW, Grabowska E, Hupka J (2008) Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Appl Catal B 78:92–100. doi: 10.1016/j.apcatb.2007.09.005 CrossRefGoogle Scholar
  46. Zhang LW, Wang YJ, Cheng HY, Yao WQ, Zhu Y-F (2009) Synthesis of Bi2WO6 porous thin films as efficient visible-active photocatalyst. Adv Mater 21:1286–1290. doi: 10.1002/adma.200801354 CrossRefGoogle Scholar
  47. Zhao W, Ma W, Chen C, Zhao J, Shuai Z (2004) Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−XBX under visible irradiation. J Am Chem Soc 126:4782–4783. doi: 10.1021/ja0396753 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Environmental & Water Technology Centre of InnovationNgee Ann PolytechnicSingaporeSingapore
  4. 4.Solar Fuels Lab, School of Material Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations