Environmental applications and potential health implications of quantum dots

  • Farhan Ahmad
  • Alok K. Pandey
  • Amanda B. Herzog
  • Joan B. Rose
  • Charles P. Gerba
  • Syed A. HashshamEmail author


Quantum dots (QDs) are routinely employed for bioimaging applications and detection of pathogens and toxins. Their use as surrogates to study the fate and transport of non-fluorescent nanoparticles is limited due to high cost, detection of limit issues, and lack of sufficient data related to health effects. Systematic studies on the impact of QDs on environment and health may facilitate its safe use for environmental applications. This review summarizes the studies conducted with QDs with a focus on environmental applications and provides toxicity data important to human health.


Quantum dot Fluorescent Environmental Surrogate Nanoparticle Health 



This research has been supported by the Center for Advancing Microbial Risk Assessment, funded by the U.S. Environmental Protection Agency Science to Achieve Results (STAR) program, and U.S. Department of Homeland Security University Programs grant R83236201. We acknowledge the American Red Cross Blood Services, Lansing, Michigan for providing the blood samples.


  1. Ahmad F, Hashsham SA (2009) Nanosensors. In: Zhang TC, Surampalli RY, Lai KCK, Hu Z, Tyagi RD, Lo IMC (eds) Nanotechnologies for water environment applications. American Society of Civil Engineers, Reston, pp 412–443Google Scholar
  2. Ahmad F, Seyrig G, Tourlousse D, Stedtfeld R, Tiedje J, Hashsham S (2011) A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips. Biomed Microdevices 13:929–937CrossRefGoogle Scholar
  3. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99:12617–12621CrossRefGoogle Scholar
  4. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  5. Alivisatos P (2000) Colloidal quantum dots. From scaling laws to biological applications. Pure Appl Chem 72:3–9CrossRefGoogle Scholar
  6. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52CrossRefGoogle Scholar
  7. Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611CrossRefGoogle Scholar
  8. Awara WM, El-Nabi SH, El-Gohary M (1998) Assessment of vinyl chloride-induced DNA damage in lymphocytes of plastic industry workers using a single-cell gel electrophoresis technique. Toxicology 128:9–16CrossRefGoogle Scholar
  9. Bakalova R, Ohba H, Zhelev Z, Nagase T, Jose R, Ishikawa M, Baba Y (2004) Quantum dot anti-CD conjugates: are they potential photosensitizers or potentiators of classical photosensitizing agents in photodynamic therapy of cancer? Nano Lett 4:1567–1573CrossRefGoogle Scholar
  10. Bales RC, Hinkle SR, Kroeger TW, Stocking K, Gerba CP (1991) Bacteriophage adsorption during transport through porous-media—chemical perturbations and reversibility. Environ Sci Technol 25:2088–2095CrossRefGoogle Scholar
  11. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconj Chem 15:79–86CrossRefGoogle Scholar
  12. Bao YJ, Li JJ, Wang YT, Yu L, Lou L, Du WJ, Zhu ZQ, Peng H, Zhu JZ (2011) Probing cytotoxicity of CdSe and CdSe/CdS quantum dots. Clin Chem Lett 22:843–846CrossRefGoogle Scholar
  13. BCC Research of Wellesley (2011) Quantum dots: global market growth and future commercial prospects.
  14. Beebe DJ, Mensing GA, Walker GM (2004) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286CrossRefGoogle Scholar
  15. Borrebaeck CAK (2000) Antibodies in diagnostics—from immunoassays to protein chips. Immunol Today 21:379–382CrossRefGoogle Scholar
  16. Bottini M, Cerignoli F, Dawson MI, Magrini A, Rosato N, Mustelin T (2006) Full-length single-walled carbon nanotubes decorated with streptavidin-conjugated quantum dots as multivalent intracellular fluorescent nanoprobes. Biomacromolecules 7:2259–2263CrossRefGoogle Scholar
  17. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  18. Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  19. Chen FQ, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4:1827–1832CrossRefGoogle Scholar
  20. Cho SJ, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik FM (2007) Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir 23:1974–1980CrossRefGoogle Scholar
  21. Clapp AR, Medintz IL, Uyeda HT, Fisher BR, Goldman ER, Bawendi MG, Mattoussi H (2005) Quantum dot-based multiplexed fluorescence resonance energy transfer. J Am Chem Soc 127:18212–18221CrossRefGoogle Scholar
  22. Courty S, Luccardini C, Bellaiche Y, Cappello G, Dahan M (2006) Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett 6:1491–1495CrossRefGoogle Scholar
  23. Dabbousi BO, RodriguezViejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475CrossRefGoogle Scholar
  24. Dahan M, Laurence T, Pinaud F, Chemla DS, Alivisatos AP, Sauer M, Weiss S (2001) Time-gated biological imaging by use of colloidal quantum dots. Opt Lett 26:825–827CrossRefGoogle Scholar
  25. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A (2003) Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–445CrossRefGoogle Scholar
  26. Dameron CT, Resse RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  27. Darnault CJG, Bonina SMC, Uyusur B, Snee PT (2009) Visualization and transport of quantum dot nanomaterials in porous media. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Springer, Dordrecht, pp 139–148CrossRefGoogle Scholar
  28. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  29. Dhawan A, Taurozzi JS, Pandey AK, Shan WQ, Miller SM, Hashsham SA, Tarabara VV (2006) Stable colloidal dispersions of C-60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol 40:7394–7401CrossRefGoogle Scholar
  30. Dixit SK, Goicochea NL, Daniel MC, Murali A, Bronstein L, De M, Stein B, Rotello VM, Kao CC, Dragnea B (2006) Quantum dot encapsulation in viral capsids. Nano Lett 6:1993–1999CrossRefGoogle Scholar
  31. Domingos RF, Baalousha MA, Ju-Nam Y, Reid MM, Tufenkji N, Lead JR, Leppard GG, Wilkinson KJ (2009) Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes. Environ Sci Technol 43:7277–7284CrossRefGoogle Scholar
  32. Dubertret B (2005) Quantum dots—DNA detectives. Nat Mater 4:797–798CrossRefGoogle Scholar
  33. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762CrossRefGoogle Scholar
  34. Eastman PS, Ruan WM, Doctolero M, Nuttall R, De Feo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FQF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6:1059–1064CrossRefGoogle Scholar
  35. Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4:757–766Google Scholar
  36. Fan TWM, Teh SJ, Hinton DE, Higashi RM (2002) Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California. Aquat Toxicol 57:65–84CrossRefGoogle Scholar
  37. Gao XH, Nie SM (2004) Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem 76:2406–2410CrossRefGoogle Scholar
  38. Gao XH, Qi LF (2008) Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv 5:263–267CrossRefGoogle Scholar
  39. Gao XH, Chan WCW, Nie SM (2002) Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. J Biomed Opt 7:532–537CrossRefGoogle Scholar
  40. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185CrossRefGoogle Scholar
  41. Garaj-Vrhovac V, Zeljezic D (2002) Assessment of genome damage in a population of Croatian workers employed in pesticide production by chromosomal aberration analysis, micronucleus assay and Comet assay. J Appl Toxicol 22:249–255CrossRefGoogle Scholar
  42. Geissler D, Charbonniere LJ, Ziessel RF, Butlin NG, Lohmannsroben HG, Hildebrandt N (2010) Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew Chem Int Ed 49:1396–1401CrossRefGoogle Scholar
  43. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRefGoogle Scholar
  44. Gerion D, Chen FQ, Kannan B, Fu AH, Parak WJ, Chen DJ, Majumdar A, Alivisatos AP (2003) Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem 75:4766–4772CrossRefGoogle Scholar
  45. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL, Mattoussi H (2004) Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem 76:684–688CrossRefGoogle Scholar
  46. Gonzales E, Arbiol J, Puntes VF (2011) Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature. Science 334:1377–1380CrossRefGoogle Scholar
  47. Goyer RA (1995) Nutrition and metal toxicity. Am J Clin Nutr 61:S646–S650Google Scholar
  48. Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun 121–123Google Scholar
  49. Guo WZ, Li JJ, Wang YA, Peng XG (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater 15:3125–3133CrossRefGoogle Scholar
  50. Guo G, Liu W, Liang J, He Z, Xu H, Yang X (2007) Probing the cytotoxicity of CdSe quantum dots with surface modification. Mater Lett 61:1641–1644CrossRefGoogle Scholar
  51. Guzelian AA, Banin U, Kadavanich AV, Peng X, Alivisatos AP (1996a) Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl Phys Lett 69:1432–1434CrossRefGoogle Scholar
  52. Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR (1996b) Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem 100:7212–7219CrossRefGoogle Scholar
  53. Hahn MA, Keng PC, Krauss TD (2008) Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Anal Chem 80:864–872CrossRefGoogle Scholar
  54. Hamilton SJ (2004) Review of selenium toxicity in the aquatic food chain. Sci Total Environ 326:1–31CrossRefGoogle Scholar
  55. Han MY, Gao XH, Su JZ, Nie S (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635CrossRefGoogle Scholar
  56. Hanaki K, Momo A, Oku T, Komoto A, Maenosono S, Yamaguchi Y, Yamamoto K (2003) Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem Biophys Res Commun 302:496–501CrossRefGoogle Scholar
  57. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172CrossRefGoogle Scholar
  58. Harrison MT, Kershaw SV, Burt MG, Eychmuller A, Weller H, Rogach AL (2000a) Wet chemical synthesis and spectroscopic study of CdHgTe nanocrystals with strong near-infrared luminescence. Mater Sci Eng B 69:355–360CrossRefGoogle Scholar
  59. Harrison MT, Kershaw SV, Burt MG, Rogach AL, Kornowski A, Eychmuller A, Weller H (2000b) Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dots. Pure Appl Chem 72:295–307CrossRefGoogle Scholar
  60. Hartmann A, Herkommer K, Gluck M, Speit G (1995) DNA-damaging effect of cyclophosphamide on human blood-cells in vivo and in vitro studied with the single-cell gel test (Comet assay). Environ Mol Mutagen 25:180–187CrossRefGoogle Scholar
  61. Henson MC, Chedrese PJ (2004) Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med 229:383–392Google Scholar
  62. Hetsch F, Xu XQ, Wang HK, Kershaw SV, Rogach AL (2011) Semiconductor nanocrystal quantum dots as solar cell components and photosensitizers: material, charge transfer, and separation aspects of some device topologies. J Phys Chem Lett 2:1879–1887CrossRefGoogle Scholar
  63. Ho YP, Kung MC, Yang S, Wang TH (2005) Multiplexed hybridization detection with multicolor colocalization of quantum dot nanoprobes. Nano Lett 5:1693–1697CrossRefGoogle Scholar
  64. Hoet PH, Bruske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:1–15CrossRefGoogle Scholar
  65. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, Yasuhara M, Suzuki K, Yamamoto K (2004a) Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163–2169CrossRefGoogle Scholar
  66. Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004b) Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. Biochem Biophys Res Commun 314:46–53CrossRefGoogle Scholar
  67. Huang XY, Weng JF, Sang FM, Song XT, Cao CX, Ren JC (2006a) Characterization of quantum dot bioconjugates by capillary electrophoresis with laser-induced fluorescent detection. J Chromatogr A 1113:251–254CrossRefGoogle Scholar
  68. Huang ZL, Zhao YD, Luo QM (2006b) Quantum-dot-tagged microbeads and their use as fluorescent biological probes. Curr Anal Chem 2:59–66CrossRefGoogle Scholar
  69. IFT (2002) Institute of food technology expert report on emerging microbiological food safety issues—implications for control in the 21st century. IFT, Washington, DCGoogle Scholar
  70. Ipe BL, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1:706–709CrossRefGoogle Scholar
  71. Jaiswal JK, Simon SM (2004) Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497–504CrossRefGoogle Scholar
  72. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51CrossRefGoogle Scholar
  73. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732CrossRefGoogle Scholar
  74. Jans H, Liu X, Austin L, Maes G, Huo Q (2009) Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Anal Chem 81:9425–9432CrossRefGoogle Scholar
  75. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J Magn Magn Mater 194:185–196CrossRefGoogle Scholar
  76. Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem Int Edit 47:5186–5189CrossRefGoogle Scholar
  77. Khaliq A, Sonawane PJ, Sasi BK, Sahu BS, Pradeep T, Das SK, Mahapatra NR (2010) Enhancement in the efficiency of polymerase chain reaction by TiO(2) nanoparticles: crucial role of enhanced thermal conductivity. Nanotechnology 21:1–11Google Scholar
  78. Kim K, Yoon S, Yoon E, Koo YM, Lee JL (2003a) Aspect ratio dependent strains in InAs/InP quantum dots measured by synchrotron radiation X-ray diffraction. J Vac Sci Technol B 21:183–185CrossRefGoogle Scholar
  79. Kim S, Fisher B, Eisler HY, Bawendi MG (2003b) Novel type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J Am Chem Soc 125:11466–11467CrossRefGoogle Scholar
  80. Kim SC, Harrington MS, Pui DYH (2007) Experimental study of nanoparticles penetration through commercial filter media. J Nanopart Res 9:117–125CrossRefGoogle Scholar
  81. Kim YG, Moon S, Kuritzkes DR, Demirci U (2009) Quantum dot-based HIV capture and imaging in a microfluidic channel. Biosens Bioelectron 25:253–258CrossRefGoogle Scholar
  82. Kirchner C, Javier AM, Susha AS, Rogach AL, Kreft O, Sukhorukov GB, Parak WJ (2005a) Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta 67:486–491CrossRefGoogle Scholar
  83. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005b) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338CrossRefGoogle Scholar
  84. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213CrossRefGoogle Scholar
  85. Klostranec JM, Xiang Q, Farcas GA, Lee JA, Rhee A, Lafferty EI, Perrault SD, Kain KC, Chan WCW (2007) Convergence of quantum dot barcodes with microfluidics and signal processing for multiplexed high-throughput infectious disease diagnostics. Nano Lett 7:2812–2818CrossRefGoogle Scholar
  86. Kondoh M, Araragi S, Sato K, Higashimoto M, Takiguchi M, Sato M (2002) Cadmium induces apoptosis partly via caspase-9 activation in HL-60 cells. Toxicology 170:111–117CrossRefGoogle Scholar
  87. Krichevsky O, Bonnet G (2002) Fluorescence correlation spectroscopy: the technique and its applications. Rep Prog Phys 65:251–297CrossRefGoogle Scholar
  88. Lad AD, Mahamuni S (2008) Effect of ZnS shell formation on the confined energy levels of ZnSe quantum dots. Phys Rev B 78:125421–125429CrossRefGoogle Scholar
  89. Lambertini E, Spencer SK, Bertz PD, Loge FJ, Kieke BA, Borchardt MA (2008) Concentration of Enteroviruses, Adenoviruses, and Noroviruses from drinking water by use of glass wool filters. Appl Environ Microbiol 74:2990–2996CrossRefGoogle Scholar
  90. Larson DR, Zipfel W, Clark S, Bruchez M, Wise F, Webb WW (2003) Novel water-soluble quantum dots with large two-photon cross-sections for biological imaging. Biophys J 84:23AGoogle Scholar
  91. Li M, Lin YC, Wu CC, Liu HS (2005) Enhancing the efficiency of a PCR using gold nanoparticles. Nucleic Acids Res 33:e184CrossRefGoogle Scholar
  92. Li WY, Mei F, He XW, Zhang YK (2008) Preparation and characterization of CdHgTe nanoparticles and their application on the determination of proteins. J Fluoresc 18:883–890CrossRefGoogle Scholar
  93. Liang GF, Ma C, Zhu YL, Li SC, Shao YH, Wang Y, Xiao ZD (2011) Enhanced specificity of multiplex polymerase chain reaction via CdTe quantum dots. Nanoscale Res Lett 6:51Google Scholar
  94. Liao YF, Li WJ (2008) Synthesis of CdSe quantum dots via paraffin liquid and oleic acid. J Zhejiang Univ Sci A 9:133–136CrossRefGoogle Scholar
  95. Limaye DA, Shaikh ZA (1999) Cytotoxicity of cadmium and characteristics of its transport in cardiomyocytes. Toxicol Appl Pharmacol 154:59–66CrossRefGoogle Scholar
  96. Lin ZB, Cui SX, Zhang H, Chen QD, Yang B, Su XG, Zhang JH, Jin QH (2003) Studies on quantum dots synthesized in aqueous solution for biological labeling via electrostatic interaction. Anal Biochem 319:239–243CrossRefGoogle Scholar
  97. Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7CrossRefGoogle Scholar
  98. Liu WT, Zhu L, Qin QW, Zhang Q, Feng HH, Ang S (2005) Microfluidic device as a new platform for immunofluorescent detection of viruses. Lab Chip 5:1327–1330CrossRefGoogle Scholar
  99. Liu JH, Fan JB, Gu Z, Cui J, Xu XB, Liang ZW, Luo SL, Zhu MQ (2008) Green chemistry for large-scale synthesis of semiconductor quantum dots. Langmuir 24:5241–5244CrossRefGoogle Scholar
  100. Lopez E, Figueroa S, Oset-Gasque MJ, Gonzalez MP (2003) Apoptosis and necrosis: two distinct events induced by cadmium in cortical neurons in culture. Br J Pharmacol 138:901–911CrossRefGoogle Scholar
  101. Lovric J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D (2005) Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med 83:377–385CrossRefGoogle Scholar
  102. Lu ZX, Zhang ZL, Zhang MX, Xie HY, Tian ZQ, Chen P, Huang H, Pang DW (2005) Core/shell quantum-dot-photosensitized nano-TiO2 films: fabrication and application to the damage of cells and DNA. J Phys Chem B 109:22663–22666CrossRefGoogle Scholar
  103. Lucas LJ, Chesler JN, Yoon JY (2007) Lab-on-a-chip immunoassay for multiple antibodies using microsphere light scattering and quantum dot emission. Biosens Bioelectron 23:675–681CrossRefGoogle Scholar
  104. Ma N, Yang J, Stewart KM, Kelley SO (2007) DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir 23:12783–12787CrossRefGoogle Scholar
  105. Ma L, He SB, Huang J, Cao L, Yang F, Li LJ (2009) Maximizing specificity and yield of PCR by the quantum dot itself rather than property of the quantum dot surface. Biochimie 91:969–973CrossRefGoogle Scholar
  106. Mahendra S, Zhu HG, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430CrossRefGoogle Scholar
  107. Mamedova NN, Kotov NA, Rogach AL, Studer J (2001) Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286CrossRefGoogle Scholar
  108. Marre S, Jensen KF (2010) Synthesis of micro and nanostructures in microfluidic systems. Chem Soc Rev 39:1183–1202CrossRefGoogle Scholar
  109. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  110. Medintz IL, Mattoussi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomed 3:151–167Google Scholar
  111. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefGoogle Scholar
  112. Micic OI, Ahrenkiel SP, Bertram D, Nozik AJ (1999) Synthesis, structure, and optical properties of colloidal GaN quantum dots. Appl Phys Lett 75:478–480CrossRefGoogle Scholar
  113. Mortensen LJ, Oberdorster G, Pentland AP, DeLouise LA (2008) In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 8:2779–2787CrossRefGoogle Scholar
  114. Mukhopadhyay B, Martins MB, Karamanska R, Russell DA, Field RA (2009) Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Lett 50:886–889CrossRefGoogle Scholar
  115. Mukundan H, Xie HZ, Price D, Kubicek-Sutherland JZ, Grace WK, Anderson AS, Martinez JS, Hartman N, Swanson BI (2010) Quantitative multiplex detection of pathogen biomarkers on multichannel waveguides. Anal Chem 82:136–144CrossRefGoogle Scholar
  116. Murcia MJ, Naumann CA (2007) Biofunctionalization of fluorescent nanoparticles. In: Challa S, Kumar SR (eds) Nanotechnologies for the life sciences. Wiley, Weinheim, pp 1–40Google Scholar
  117. Murray CB, Nirmal M, Norris DJ, Bawendi MG (1993) Synthesis and structural characterization of II–VI semiconductor nanocrystallites (quantum dots). Z Phys D 26:S231–S233CrossRefGoogle Scholar
  118. Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201Google Scholar
  119. Navarro DAG, Watson DF, Aga DS, Banerjee S (2009) Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment. Environ Sci Technol 43:677–682CrossRefGoogle Scholar
  120. Navarro DA, Banerjee S, Aga DS, Watson DF (2010) Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism. J Colloid Interface Sci 348:119–128CrossRefGoogle Scholar
  121. Navarro DA, Banerjee S, Watson DF, Aga DS (2011) Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots. Environ Sci Technol 45:6343–6349CrossRefGoogle Scholar
  122. Ng CT, Li JJ, Bay BH, Yung LYL (2010) Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids 2010:1–10CrossRefGoogle Scholar
  123. Nie SM, Gao XH (2003) Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol 21:371–373CrossRefGoogle Scholar
  124. Nightingale AM, de Mello JC (2009) Controlled synthesis of III–V quantum dots in microfluidic reactors. Chem Phys Chem 10:2612–2614CrossRefGoogle Scholar
  125. Nirmal M, Brus L (1999) Luminescence photophysics in semiconductor nanocrystals. Acc Chem Res 32:407–414CrossRefGoogle Scholar
  126. Norris DJ, Bawendi MG, Murray CB (1993) Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  127. Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Micheel C, Williams SC, Seitz M, Bruehl RE, Bryant Z, Bustamante C, Bertozzi CR, Alivisatos AP (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater 14:2113–2119CrossRefGoogle Scholar
  128. Pathak S, Choi SK, Arnheim N, Thompson ME (2001) Hydroxylated quantum dots as luminescent probes for in situ hybridization. J Am Chem Soc 123:4103–4104CrossRefGoogle Scholar
  129. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4:703–707CrossRefGoogle Scholar
  130. Peng ZA, Peng XG (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395CrossRefGoogle Scholar
  131. Pereira M, Lai EPC, Hollebone B (2007) Characterization of quantum dots using capillary zone electrophoresis. Electrophoresis 28:2874–2881CrossRefGoogle Scholar
  132. Pinaud F, King D, Moore HP, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115–6123CrossRefGoogle Scholar
  133. Poliandri AHB, Cabilla JP, Velardez MO, Bodo CCA, Duvilanski BH (2003) Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants. Toxicol Appl Pharmacol 190:17–24CrossRefGoogle Scholar
  134. Prasad BR, Mullins G, Nikolskaya N, Connolly D, Smith TJ, Gérard VA, Byrne SJ, Davies G-M, Gun’ko YK, Rochev Y (2012) Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells. J Nanobiotechnol 10:1–14CrossRefGoogle Scholar
  135. Qian L, Zheng Y, Xue JG, Holloway PH (2011) Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat Photonics 5:543–548CrossRefGoogle Scholar
  136. Qu LH, Peng ZA, Peng XG (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337CrossRefGoogle Scholar
  137. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRefGoogle Scholar
  138. Riegger L, Grumann M, Nann T, Riegler J, Ehlert O, Bessler W, Mittenbuehler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducree J (2006) Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sens Actuators A Phys 126:455–462CrossRefGoogle Scholar
  139. Rikans LE, Yamano T (2000) Mechanisms of cadmium-mediated acute hepatotoxicity. J Biochem Mol Toxicol 14:110–117CrossRefGoogle Scholar
  140. Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346CrossRefGoogle Scholar
  141. Rogach AL, Harrison MT, Kershaw SV, Kornowski A, Burt MG, Eychmuller A, Weller H (2001) Colloidally prepared CdHgTe and HgTe quantum dots with strong near-infrared luminescence. Phys Status Solidi B 224:153–158CrossRefGoogle Scholar
  142. Romoser A, Ritter D, Majitha R, Meissned KE, McShane M, Sayes CM (2011) Mitigation of quantum dot cytotoxicity by microencapsulation. PLoS One 6:e22079CrossRefGoogle Scholar
  143. Rosenthal SJ, Tomlinson A, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang YQ, DeFelice LJ, Blakely RD (2002) Targeting cell surface receptors with ligand-conjugated nanocrystals. J Am Chem Soc 124:4586–4594CrossRefGoogle Scholar
  144. Rosenthal SJ, McBride J, Pennycook SJ, Feldman LC (2007) Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf Sci Rep 62:111–157CrossRefGoogle Scholar
  145. Salim NA, Barraclough E, Burgess E, Clothier B, Deurer M, Green S, Malone L, Weir G (2011) Quantum dot transport in soil, plants, and insects. Sci Total Environ 409:3237–3248CrossRefGoogle Scholar
  146. Samia ACS, Chen XB, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737CrossRefGoogle Scholar
  147. Satarug S, Moore MR (2004) Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect 112:1099–1103CrossRefGoogle Scholar
  148. Schijven JF, Hoogenboezem W, Hassanizadeh SM, Peters JH (1999) Modeling removal of bacteriophages MS2 and PRD1 by dune recharge at Castricum, Netherlands. Water Resour Res 35:1101–1111CrossRefGoogle Scholar
  149. Sengül H, Theis TL (2009) Life cycle inventory of semiconductor cadmium selenide quantum dots for environmental applications. In: Diallo M, Duncan J, Savage N, Street A, Sustich R (eds) Nanotechnology applications for clean water. William Andrew Inc., Norwich, pp 561–582CrossRefGoogle Scholar
  150. Sengül H, Theis TL (2011) An environmental impact assessment of quantum dot photovoltaics (QDPV) from raw material acquisition through use. J Clean Prod 19:21–31CrossRefGoogle Scholar
  151. Seydel C (2003) Quantum dots get wet. Science 300:80–81CrossRefGoogle Scholar
  152. Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48:669–675Google Scholar
  153. Sinclair RG, Rose JB, Hashsham SA, Gerba CP, Haas CN (2012) Criteria for selection of surrogates used to study the fate and control of pathogens in the environment. Appl Environ Microbiol 78:1969–1977CrossRefGoogle Scholar
  154. Singh S, Bozhilov K, Mulchandani A, Myung N, Chen W (2010) Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals. Chem Commun 46:1473–1475CrossRefGoogle Scholar
  155. Slaveykova SI, Startchev K (2009) Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions. Environ Pollut 157:3445–3450CrossRefGoogle Scholar
  156. Smith AM, Nie SM (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200CrossRefGoogle Scholar
  157. Smith AM, Gao XH, Nie SM (2004) Quantum dot nanocrystals for in vivo molecular and cellular imaging. Photochem Photobiol 80:377–385Google Scholar
  158. Smith AM, Dave S, Nie SM, True L, Gao XH (2006) Multicolor quantum dots for molecular diagnostics of cancer. Expert Rev Mol Diagn 6:231–244CrossRefGoogle Scholar
  159. Soenena SJ, Demeestera J, Smedta SCD, Braeckmansa K (2012) The cytotoxic effects of polymer-coated quantum dots and restrictions for live cell applications. Biomaterials 33:4882–4888CrossRefGoogle Scholar
  160. Song XT, Li L, Chan HF, Fang NH, Ren JC (2006) Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium. Electrophoresis 27:1341–1346CrossRefGoogle Scholar
  161. Soussan L, Guigui C, Mathe C, Alfenore S, Cabassud C (2012) Enzyme-labeled phages detected by amperometry: a new method to study inline virus retention in membrane processes. AIChE J. doi: 10.1002/aic.13788 Google Scholar
  162. Spallholz JE, Hoffman DJ (2002) Selenium toxicity: cause and effects in aquatic birds. Aquat Toxicol 57:27–37CrossRefGoogle Scholar
  163. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655CrossRefGoogle Scholar
  164. Stewart DTR, Celiz MD, Vicente G, Colo′n LA, Aga DS (2011) Potential use of capillary zone electrophoresis in size characterization of quantum dots for environmental studies. Trends Anal Chem 30:113–122CrossRefGoogle Scholar
  165. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846CrossRefGoogle Scholar
  166. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium based, aqueous phase-Synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19–25CrossRefGoogle Scholar
  167. Sweeney RY, Mao CB, Gao XX, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11:1553–1559CrossRefGoogle Scholar
  168. Tang M, Xing T, Zeng J, Wang H, Li C, Yin S, Yan D, Deng H, Liu J, Wang M, Chen J, Ruan D-Y (2008) Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 16:915–922CrossRefGoogle Scholar
  169. Tekle C, van Deurs B, Sandvig K, Iversen TG (2008) Cellular trafficking of quantum dot-ligand bioconjugates and their induction of changes in normal routing of unconjugated ligands. Nano Lett 8:1858–1865CrossRefGoogle Scholar
  170. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  171. Torkzaban S, Kim Y, Mulvihill M, Wan J, Wan J, Tokunaga TK (2010) Transport and deposition of functionalized CdTe nanoparticles in saturated porous media. J Contam Hydrol 118:208–217CrossRefGoogle Scholar
  172. Tsay JM, Michalet X (2005) New light on quantum dot cytotoxicity. Chem Biol 12:1159–1161CrossRefGoogle Scholar
  173. Uyusur B, Darnault CJG, Snee PT, Koken E, Jacobson AR, Wells RR (2010) Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone. J Contam Hydrol 118:184–198CrossRefGoogle Scholar
  174. Van Cuyk S, Siegrist RL, Lowe K, Harvey RW (2004) Evaluating microbial purification during soil treatment of wastewater with multicomponent tracer and surrogate tests. J Environ Qual 33:316–329CrossRefGoogle Scholar
  175. von Wintzingerode F, Goëbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229CrossRefGoogle Scholar
  176. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998CrossRefGoogle Scholar
  177. Wang H-C, Kasper G (1991) Filtration efficiency of nanometer-size aerosol particles. J Aerosol Sci 22:31–41CrossRefGoogle Scholar
  178. Wang LY, Zhou YY, Wang L, Zhu CQ, Li YX, Gao F (2002) Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe. Anal Chim Acta 466:87–92CrossRefGoogle Scholar
  179. Wang L, Nagasha DK, Selvarasah S, Dokmeci MR, Carrier RL (2008) Toxicity of CdSe nanoparticles in Caco-2 cell cultures. J Nanobiotechnol 6:1–15CrossRefGoogle Scholar
  180. Wang LB, Zhu YY, Jiang Y, Qiao RR, Zhu SF, Chen W, Xu CL (2009a) Effects of quantum dots in polymerase chain reaction. J Phys Chem B 113:7637–7641CrossRefGoogle Scholar
  181. Wang XY, Ren XF, Kahen K, Hahn MA, Rajeswaran M, Maccagnano-Zacher S, Silcox J, Cragg GE, Efros AL, Krauss TD (2009b) Non-blinking semiconductor nanocrystals. Nature 459:686–689CrossRefGoogle Scholar
  182. Warner MG, Grate JW, Tyler A, Ozanich RM, Miller KD, Lou JL, Marks JD, Bruckner-Lea CJ (2009) Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. Biosens Bioelectron 25:179–184CrossRefGoogle Scholar
  183. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24:1001–1011CrossRefGoogle Scholar
  184. Wong I, Ho C-H (2009) Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid Nanofluid 73:291–306CrossRefGoogle Scholar
  185. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41–46CrossRefGoogle Scholar
  186. Wu YW, Li XQ, Steel D, Gammon D, Sham LJ (2004) Coherent optical control of semiconductor quantum dots for quantum information processing. Phys E Low Dimens Syst Nanostruct 25:242–248CrossRefGoogle Scholar
  187. Xu HX, Sha MY, Wong EY, Uphoff J, Xu YH, Treadway JA, Truong A, O’Brien E, Asquith S, Stubbins M, Spurr NK, Lai EH, Mahoney W (2003) Multiplexed SNP genotyping using the Qbead (TM) system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31:10CrossRefGoogle Scholar
  188. Yang B, Sun HZ, Zhang H, Ju J, Zhang JH, Qian G, Wang CL, Wang ZY (2008) One-step synthesis of high-quality gradient CdHgTe nanocrystals: a prerequisite to prepare CdHgTe-polymer bulk composites with intense near-infrared photoluminescence. Chem Mater 20:6764–6769CrossRefGoogle Scholar
  189. Yang H, Fan N, Luan W, Tu ST (2009) Controlled synthesis of III–V quantum dots in microfluidic reactors. Nanoscale Res Lett 4:344–352CrossRefGoogle Scholar
  190. Yen BKH, Stott NE, Jensen KF, Bawendi MG (2003) A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv Mater 15:1858–1862CrossRefGoogle Scholar
  191. Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437:664–670CrossRefGoogle Scholar
  192. Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4:826–831CrossRefGoogle Scholar
  193. Zhang Q, Zhu L, Feng HH, Ang S, Chau FS, Liu WT (2006) Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization. Anal Chim Acta 556:171–177CrossRefGoogle Scholar
  194. Zhao JL, Bardecker JA, Munro AM, Liu MS, Niu YH, Ding IK, Luo JD, Chen BQ, Jen AKY, Ginger DS (2006) Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett 6:463–467CrossRefGoogle Scholar
  195. Zhu L, Ang S, Liu WT (2004) Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 70:597–598CrossRefGoogle Scholar
  196. Zrazhevskiy P, Sena M, Gao XH (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Farhan Ahmad
    • 1
    • 4
  • Alok K. Pandey
    • 1
    • 4
  • Amanda B. Herzog
    • 1
    • 4
  • Joan B. Rose
    • 2
    • 4
  • Charles P. Gerba
    • 3
    • 4
  • Syed A. Hashsham
    • 1
    • 4
    Email author
  1. 1.Department of Civil and Environmental EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Department of Fisheries and WildlifeMichigan State UniversityEast LansingUSA
  3. 3.Department of Soil, Water and Environmental ScienceUniversity of ArizonaTucsonUSA
  4. 4.Center for Advancing Microbial Risk AssessmentMichigan State UniversityEast LansingUSA

Personalised recommendations