Advertisement

Nanoparticle dispersion in environmentally relevant culture media: a TiO2 case study and considerations for a general approach

  • Allison M. Horst
  • Zhaoxia Ji
  • Patricia A. Holden
Research Paper

Abstract

Nanoparticle exposure in toxicity studies requires that nanoparticles are bioavailable by remaining highly dispersed in culture media. However, reported dispersion approaches are variable, mostly study-specific, and not transferable owing to their empirical basis. Furthermore, many published approaches employ proteinaceous dispersants in rich laboratory media, both of which represent end members in environmental scenarios. Here, a systematic approach was developed to disperse initially agglomerated TiO2 nanoparticles (Aeroxide® TiO2 P25, Evonik, NJ; primary particle size range 6.4–73.8 nm) in oligotrophic culture medium for environmentally relevant bacterial toxicity studies. Based on understanding particle–particle interactions in aqueous media and maintaining environmental relevance, the approach involves (1) quantifying the relationship between pH and zeta potential to determine the point of zero charge of select nanoparticles in water; (2) nominating, then testing and selecting, environmentally relevant stabilizing agents; and (3) dispersing via “condition and capture” whereby stock dry powder nanoparticles are sonicated in pre-conditioned (with base, or acid, plus stabilizing agent) water, then diluted into culture media. The “condition and capture” principle is transferable to other nanoparticle and media chemistries: simultaneously, mechanically and electrostatically, nanoparticles can be dispersed with surrounding stabilizers that coat and sterically hinder reagglomeration in the culture medium.

Keywords

Nanoparticle Dispersion Agglomeration Toxicity Dynamic light scattering TiO2 

Notes

Acknowledgments

This research was primarily funded by the National Science Foundation and the Environmental Protection Agency under cooperative agreement no. DBI-0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of either the National Science Foundation or the Environmental Protection Agency. This work has not been subjected to Environmental Protection Agency review and no official endorsement should be inferred.

Supplementary material

11051_2012_1014_MOESM1_ESM.pdf (227 kb)
Supplementary material 1 (PDF 227 kb)

References

  1. Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR (2009) Agglomeration and sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B 68:83–87. doi: 10.1016/j.colsurfb.2008.09.014 CrossRefGoogle Scholar
  2. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH, and natural organic matter. Sci Total Environ 407:2093–2101. doi: 10.1016/j.scitotend.2008.11.022 CrossRefGoogle Scholar
  3. Baalousha M, Montelica-Heino M, Le Coustumer P (2006) Conformation and size of humic substances: effects of major cation concentration and type, pH, salinity, and residence time. Colloids Surf A 272:48–55. doi: 10.1016/j.colsurfa.2005.07.010 CrossRefGoogle Scholar
  4. Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdorster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA (2007) Meeting report: hazard assessment for nanoparticles: report from an interdisciplinary workshop. Environ Health Perspect 115:1654–1659. doi: 10.1289/chp.10327 CrossRefGoogle Scholar
  5. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14–28. doi: 10.1186/1743-8977-5-14 CrossRefGoogle Scholar
  6. Brezonik PL, Arnold WA (2011) Water chemistry: an introduction to the chemistry of natural and engineered aquatic systems. Oxford University Press, OxfordGoogle Scholar
  7. Chang XJ, Vikesland PJ (2009) Effects of carboxylic acids on nC(60) aggregate formation. Environ Pollut 157:1072–1080. doi: 10.1016/j.envpol.2008.09.052 CrossRefGoogle Scholar
  8. Chen KL, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126–134. doi: 10.1016/j.jcis.2007.01.074 CrossRefGoogle Scholar
  9. Dhawan A, Sharma V, Parmar D (2009) Nanomaterials: a challenge for toxicologists. Nanotoxicology 3:1–9. doi: 10.1080/17435390802578595 CrossRefGoogle Scholar
  10. Domingos RF, Tufenkji N, Wilkinson KJ (2009) Aggregation of titanium dioxide nanoparticles: role of a fulvic acid. Environ Sci Technol 43:1282–1286. doi: 10.1021/es8023594 CrossRefGoogle Scholar
  11. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC (2009) Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol 43:1354–1359. doi: 10.1021/es802628n CrossRefGoogle Scholar
  12. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4:347–363. doi: 10.3109/17435390.2010.509519 CrossRefGoogle Scholar
  13. Ghosh S, Mashayekhi H, Pan B, Bhowmik P, Xing B (2008) Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir 24:12385–12391. doi: 10.1021/la802015f CrossRefGoogle Scholar
  14. Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693. doi: 10.1021/es060847g CrossRefGoogle Scholar
  15. Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH, Mädler L, Stucky GD, Holden PA (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76:7292–7298. doi: 10.1128/AEM.00324-10 CrossRefGoogle Scholar
  16. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924. doi: 10.2134/jeq2009.0462 CrossRefGoogle Scholar
  17. Hu J, Zevi Y, Kou X, Xiao J, Wang X, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408:3477–3489. doi: 10.1016/j.scitotenv.2010.03.033 CrossRefGoogle Scholar
  18. Ji ZX, Jin X, George S, Xia TA, Meng HA, Wang X, Suarez E, Zhang HY, Hoek EMV, Godwin H, Nel AE (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44:7309–7314. doi: 10.1021/es100417s CrossRefGoogle Scholar
  19. Jiang J, Oberdörster G, Biswas P (2009) Characteriziation of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89. doi: 10.1007/s11051-008-9446-4 CrossRefGoogle Scholar
  20. Kaszuba M, Connah MT (2006) Protein and nanoparticle characterization using light scattering techniques. Part Part Syst Char 23:193–196. doi: 10.1002/ppsc.200601030 CrossRefGoogle Scholar
  21. Keller AA, Wang HT, Zhou DX, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji ZX (2010) Stability and aggregation of metal-oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. doi: 10.1021/es902087d CrossRefGoogle Scholar
  22. Koeppen S, Oliver B, Walter L (2008) Adsorption configurations and energies of amino acids on anatase and rutile surfaces. J Phys Chem C 112:13600–13606. doi: 10.1021/jp803354 CrossRefGoogle Scholar
  23. Kopac T, Bozgeyik K, Yener J (2008) Effect of pH and temperature on the adsorption of bovine serum albumin onto titanium dioxide. Colloids Surf A 322:19–28. doi: 10.1016/j.colsurfa.2008.02.010 CrossRefGoogle Scholar
  24. Li QL, Xie B, Hwang YS, Xu YJ (2009) Kinetics of C-60 fullerene dispersion in water enhanced by natural organic matter and sunlight. Environ Sci Technol 43:3574–3579. doi: 10.1021/es803603x CrossRefGoogle Scholar
  25. Liu J, Aruguete DM, Jinschek JR, Rimstidt JD, Hochella MF (2008) The non-oxidative dissolution of galena nanocrystals: insights into mineral dissolution rates as a function of grain size, shape, and aggregation state. Geochim Cosmochim Acta 72:5984–5996. doi: 10.1016/j.gca.2008.10.010 CrossRefGoogle Scholar
  26. Lynch A, Dawson KA (2008) Protein–nanoparticle interactions. Nano Today 3:40–47. doi: 10.1016/S1748-0132(08)70014-8 CrossRefGoogle Scholar
  27. Lyon DY, Alvarez PJJ (2008) Fullerene water suspension (nC60) exerts antibacterial effects via ROS-independent protein oxidation. Environ Sci Technol 42:8127–8132. doi: 10.1021/es801869m Google Scholar
  28. Madigan MT, Martinko JM, Parker J (eds) (2000) Brock biology of microorganisms. Prentice Hall, New JerseyGoogle Scholar
  29. Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160:121–126. doi: 10.1016/j.powtec.2005.08.020 CrossRefGoogle Scholar
  30. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551. doi: 10.1007/s11051-010-9900-y CrossRefGoogle Scholar
  31. Mudunkotuwa IA, Grassian VH (2010) Citric acid adsorption on TiO2 nanoparticles in aqueous suspension at acidic and circumneutral pH: surface coverage, surface speciation, and its impact on nanoparticle–nanoparticle interactions. J Am Chem Soc 132:14986–14994. doi: 10.1021/ja106091q CrossRefGoogle Scholar
  32. Naddeo V, Belgiorno V, Napoli RMA (2007) Behaviour of natural organic matter during ultrasonic irradiation. Desalination 210:175–182. doi: 10.1016/j.desal.2006.05.042 CrossRefGoogle Scholar
  33. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557. doi: 10.1038/NMAT2442 CrossRefGoogle Scholar
  34. Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ (2011) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59. doi: 10.1002/etc.726 CrossRefGoogle Scholar
  35. Oliva FY, Avalle LB, Camara OR, De Pauli CP (2003) Adsorption of human serum albumin (HSA) onto colloidal TiO2 particles, part I. J Colloid Interface Sci 261:299–311. doi: 10.1016/S0021-9797(03)00028-8 CrossRefGoogle Scholar
  36. Piret JP, Detriche S, Vigneron R, Vankoningsloo S, Rolin S, Mendoza JHM, Masereel B, Lucas S, Delhalle J, Luizi F, Saout C, Toussaint O (2010) Dispersion of multi-walled carbon nanotubes in biocompatible dispersants. J Nanopart Res 12:75–82. doi: 10.1007/s11051-009-9697-8 Google Scholar
  37. Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24:6659–6667. doi: 10.1021/la7039916 CrossRefGoogle Scholar
  38. Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1:42–51. doi: 10.1080/17435390701314902 CrossRefGoogle Scholar
  39. Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, Stucky GD, Holden PA (2009) Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa. Environ Sci Technol 43:2589–2594. doi: 10.1021/es802806n CrossRefGoogle Scholar
  40. Roncaroli F, Blesa MA (2010) Kinetics of adsorption of carboxylic acids onto titanium dioxide. Phys Chem Chem Phys 12:9938–9944. doi: 10.1039/c003086d CrossRefGoogle Scholar
  41. Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129. doi: 10.1080/17435390701381596 CrossRefGoogle Scholar
  42. Saleh NB, Pfefferle LD, Elimelech M (2010) Influence of biomacromolecules and humic acid on aggregation kinetics of single-walled carbon nanotubes. Environ Sci Technol 44:2412–2418. doi: 10.1021/es903059t CrossRefGoogle Scholar
  43. Scown TM, van Aerle R, Tyler CR (2010) Review: do engineered nanoparticles pose a significant threat to the aquatic environment? Crit Rev Toxicol 40:653–670. doi: 10.3109/10408444.2010.494174 CrossRefGoogle Scholar
  44. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New YorkGoogle Scholar
  45. Taurozzi JS, Hackley VA, Wiesner MR (2010) Ultrasonic dispersion of nanoparticles for environmental, health, and safety assessment: issues and recommendations. Nanotoxicology. doi: 10.3109/17435390.2010.528846
  46. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95:300–312. doi: 10.1093/toxsci/kfl165 CrossRefGoogle Scholar
  47. Thio BJR, Zhou DX, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563. doi: 10.1016/j.jhazmat.2011.02.072 Google Scholar
  48. Thomas CR, George S, Horst AM, Ji Z, Miller RJ, Peralta-Videa JR, Xia T, Pokhrel S, Mädler L, Gardea-Torresdey JL, Holden PA, Keller AA, Lenihan HS, Nel AE, Zink JI (2011) Nanomaterials in the environment: from materials to high-throughput screening to the organisms. ACS Nano 5:13–20. doi: 10.1021/nn1034857 Google Scholar
  49. Van Hoecke K, De Schampelaere KAC, van der Meeren P, Smagghe P, Janssen CR (2011) Aggregation and ecotoxicity of CeO2 nanoparticles in synthetic and natural waters with variable pH, organic matter concentration and ionic strength. Environ Pollut 59:970–976. doi: 10.1016/j.envpol.2010.12.010 CrossRefGoogle Scholar
  50. Vippola M, Falck GCM, Lindberg HK, Suhonen S, Vanhala E, Norppa H, Savolainen K, Tossavainen A, Tuomi T (2009) Preparation of nanoparticle dispersions for in vitro toxicity testing. Human Experimental Toxicol 28:377–385. doi: 10.117710960327109105158 CrossRefGoogle Scholar
  51. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2007) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807. doi: 10.1021/nl061025k CrossRefGoogle Scholar
  52. Yang K, Lin DH, Xing BS (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:3571–3576. doi: 10.1021/la803701b CrossRefGoogle Scholar
  53. Zhang Y, Chen YS, Westerhoff P, Crittenden J (2009) Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res 43:4249–4257. doi: 10.1016/j.watres.2009.06.005 CrossRefGoogle Scholar
  54. Zhang X, Yin L, Tang M, Pu Y (2010) Optimized method for preparation of TiO2 nanoparticle dispersion for biological study. J Nanosci Nanotechnol 10:5213–5219. doi: 10.1166/jnn.2010.2397 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Allison M. Horst
    • 1
    • 2
    • 3
  • Zhaoxia Ji
    • 2
    • 4
  • Patricia A. Holden
    • 1
    • 2
    • 3
  1. 1.Bren School of Environmental Science and ManagementUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.UC Center for the Environmental Implications of Nanotechnology (UC CEIN)Los AngelesUSA
  3. 3.Earth Research Institute, University of California at Santa BarbaraSanta BarbaraUSA
  4. 4.California NanoSystems InstituteUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations