A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study

  • Maria Ahrén
  • Linnéa Selegård
  • Fredrik Söderlind
  • Mathieu Linares
  • Joanna Kauczor
  • Patrick Norman
  • Per-Olov Käll
  • Kajsa Uvdal
Research Paper


Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4–5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r 1 and r 2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.


Gadolinium oxide Synthesis Relaxivity XPS IR Toxicity 



The present work is financed by grants from VINNOVA within the program Innovations for future health, Multifunctional Nanoprobes for Biomedical Visualization Dnr: 2008-03011, the Centre in Nanoscience and Technology at LiTH (CeNano) and Swedish research council (Grant No. 621-2010-5014). M.L. thanks SERC (Swedish e–Science Research Center) for funding and SNIC for providing computer resources. We also thank A. Preobrajenski, manager for Beamline D1011 at MaxLab in Lund, for the assistance during our NEXAFS measurements.

Supplementary material

11051_2012_1006_MOESM1_ESM.doc (356 kb)
Supplementary material 1 (DOC 355 kb)


  1. Aagaard Jensen HJ, Ågren H, Helgaker T, Jørgensen P et al (2005) DALTON, a molecular electronic structure program, Release Dalton (2011), see
  2. Ahrén M, Selegård L, Klasson A, Söderlind F, Abrikossova N, Skoglund C, Bengtsson T, Engström M, Käll P-O, Uvdal K (2010) Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement. Langmuir 26(8):5753–5762CrossRefGoogle Scholar
  3. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515CrossRefGoogle Scholar
  4. Armbruster MK, Schimmelpfennig B, Plaschke M, Rothe J, Denecke MA, Klenze R (2009) Metal-ion complexation effects in C 1s-NEXAFS spectra of carboxylic acids—evidence by quantum chemical calculations. J Electron Spectrosc Relat Phenom 169(1):51–56CrossRefGoogle Scholar
  5. Attard G, Colin B (1998) Surfaces. Oxford chemistry primers. Oxford University Press, New YorkGoogle Scholar
  6. Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH (2011) Carbon dioxide adsorption on oxide nanoparticle surfaces. Chem Eng J 170(2–3):471–481CrossRefGoogle Scholar
  7. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  8. Bednarkiewicz A, Maczka M, Strek W, Hanuza J, Karbowiak M (2006) Size dependence on infrared spectra of NaGdF4 nanocrystals. Chem Phys Lett 418(1–3):75–78CrossRefGoogle Scholar
  9. Bolskar RD, Benedetto AF, Husebo LO, Price RE, Jackson EF, Wallace S, Wilson LJ, Alford JM (2003) First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J Am Chem Soc 125(18):5471–5478CrossRefGoogle Scholar
  10. Boyd RW (2003) Nonlinear optics, 2nd edn. Academic Press, New YorkGoogle Scholar
  11. Bridot JL, Faure AC, Laurent S, Riviere C, Billotey C, Hiba B, Janier M, Josserand V, Coll JL, Vander Elst L, Muller R, Roux S, Perriat P, Tillement O (2007) Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. J Am Chem Soc 129(16):5076–5084CrossRefGoogle Scholar
  12. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352CrossRefGoogle Scholar
  13. Chaput F, Lerouge F, Tusseau-Nenez S, Coulon P-E, Dujardin C, Denis-Quanquin S, Mpambani F, Parola S (2011) Rare earth fluoride nanoparticles obtained using charge transfer complexes: a versatile and efficient route toward colloidal suspensions and monolithic transparent xerogels. Langmuir 27(9):5555–5561CrossRefGoogle Scholar
  14. Chiba K, Ohmori R, Tanigawa H, Yoneoka T, Tanaka S (2000) H2O trapping on various materials studied by AFM and XPS. Fusion Eng Des 49–50:791–797CrossRefGoogle Scholar
  15. Cumpson PJ (2001) Estimation of inelastic mean free paths for polymers and other organic materials: use of quantitative structure–property relationships. Surf Interface Anal 31(1):23–34CrossRefGoogle Scholar
  16. Dolg M, Stoll H, Savin A, Preuss H (1989) Energy-adjusted pseudopotentials for the rare earth elements. Theor Chim Acta 75(3):173–194CrossRefGoogle Scholar
  17. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90(2):1007–1023CrossRefGoogle Scholar
  18. Edwards DA, Hayward RN (1968) Transition metal acetates. Can J Chem 46(22):3443–3446CrossRefGoogle Scholar
  19. Ekström U, Norman P (2006) X-ray absorption spectra from the resonant-convergent first-order polarization propagator approach. Phys Rev A 74(4):042722CrossRefGoogle Scholar
  20. Engström M, Klasson A, Pedersen H, Vahlberg C, Käll P-O, Uvdal K (2006) High proton relaxivity for gadolinium oxide nanoparticles. Magn Reson Mater Phys Biol Med 19(4):180–186Google Scholar
  21. Evanics F, Diamente PR, van Veggel FCJM, Stanisz GJ, Prosser RS (2006) Water-soluble GdF3 and GdF3/LaF3 nanoparticles—physical characterization and NMR relaxation properties. Chem Mater 18(10):2499–2505CrossRefGoogle Scholar
  22. Favas MC, Kepert DL, Skelton BW, White AH (1980) Crystal structure of gadolinium(III) acetate tetrahydrate. Stereo-chemistry of the nine-co-ordinate [M(bidentate ligand)3(unidentate ligand)3]+/− system. J Chem Soc Dalton Trans 3:454–458CrossRefGoogle Scholar
  23. Fortin M-A, Petoral RM Jr, Söderlind F, Klasson A, Engström M, Veres T, Käll P-O, Uvdal K (2007) Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18(39):395501CrossRefGoogle Scholar
  24. Frisch MJ (2003) Gaussian 03. Revision B05. Gaussian, PittsburghGoogle Scholar
  25. Frohlich K, Luptak R, Dobrocka E, Husekova K, Cico K, Rosova A, Lukosius M, Abrutis A, Pisecny P, Espinos JP (2006) Characterization of rare earth oxides based MOSFET gate stacks prepared by metal-organic chemical vapour deposition. Mater Sci Semicond Process 9(6):1065–1072CrossRefGoogle Scholar
  26. García-Murillo A, Le Luyer C, Dujardin C, Pedrini C, Mugnier J (2001) Elaboration and characterization of Gd2O3 waveguiding thin films prepared by the sol-gel process. Opt Mater 16(1–2):39–46CrossRefGoogle Scholar
  27. Gelius U, Hedén PF, Hedman J, Lindberg BJ, Manne R, Nordberg R, Nordling C, Siegbahn K (1970) Molecular spectroscopy by means of ESCA III. Carbon compounds. Phys Scr 2(1–2):70–80CrossRefGoogle Scholar
  28. Geraldes CF, Laurent S (2009) Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 4(1):1–23CrossRefGoogle Scholar
  29. Gonzalez-Elipe AR, Espinos JP, Fernandez A, Munuera G (1990) XPS study of the surface carbonation/hydroxylation state of metal oxides. Appl Surf Sci 45(2):103–108CrossRefGoogle Scholar
  30. Graf N, Yegen E, Gross T, Lippitz A, Weigel W, Krakert S, Terfort A, Unger WES (2009) XPS and NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces. Surf Sci 603(18):2849–2860CrossRefGoogle Scholar
  31. Guo H, Dong N, Yin M, Zhang W, Lou L, Xia S (2004a) Visible upconversion in rare earth ion-doped Gd2O3 nanocrystals. J Phys Chem B 108(50):19205–19209CrossRefGoogle Scholar
  32. Guo H, Yang X, Xiao T, Zhang W, Lou L, Mugnier J (2004b) Structure and optical properties of sol-gel derived Gd2O3 waveguide films. Appl Surf Sci 230(1–4):215–221CrossRefGoogle Scholar
  33. Gustafsson H, Ahrén M, Söderlind F, Córdoba Gallego JM, Käll P-O, Nordblad P, Westlund P-O, Uvdal K, Engström M (2011) Magnetic and electron spin relaxation properties of (GdxY1−x)2O3 (0 ≤ x ≤ 1) nanoparticles synthesized by the combustion method. Increased electron spin relaxation times with increasing yttrium content. J Phys Chem C 115(13):5469–5477CrossRefGoogle Scholar
  34. Hasselström J, Karis O, Weinelt M, Wassdahl N, Nilsson A, Nyberg M, Pettersson LGM, Samant MG, Stöhr J (1998) The adsorption structure of glycine adsorbed on Cu(110); comparison with formate and acetate/Cu(110). Surf Sci 407(1–3):221–236CrossRefGoogle Scholar
  35. Hatscher ST, Urland W (2003) Unexpected appearance of molecular ferromagnetism in the ordinary acetate [{Gd(OAc)3(H2O)2–2]·4H2O. Angew Chem Int Ed 42(25):2862–2864CrossRefGoogle Scholar
  36. Helm L, Merbach AE (2005) Inorganic and bioinorganic solvent exchange mechanisms. Chem Rev 105(6):1923–1960CrossRefGoogle Scholar
  37. Hifumi H, Yamaoka S, Tanimoto A, Citterio D, Suzuki K (2006) Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. J Am Chem Soc 128(47):15090–15091CrossRefGoogle Scholar
  38. Hugenschmidt MB, Gamble L, Campbell CT (1994) The interaction of H2O with a TiO2(110) surface. Surf Sci 302(3):329–340CrossRefGoogle Scholar
  39. Jeon S, Hwang H (2003) Effect of hygroscopic nature on the electrical characteristics of lanthanide oxides (Pr2O3, Sm2O3, Gd2O3, and Dy2O3). J Appl Phys 93(10):6393–6395CrossRefGoogle Scholar
  40. Kaltsoyannis K, Scott P (1999) The f elements. Oxford chemistry primers. Oxford University Press, OxfordGoogle Scholar
  41. Karraker DG (1969) Thiourea-lanthanide acetate complexes. J Inorg Nucl Chem 31(9):2833–2839CrossRefGoogle Scholar
  42. Kauczor J, Jørgensen P, Norman P (2011) On the efficiency of algorithms for solving Hartree–Fock and Kohn–Sham response equations. J Chem Theory Comput 7(6):1610–1630CrossRefGoogle Scholar
  43. Kim J, Jung Y, Lee J-K (2010) Synthesis and characterization of hollow nanoparticles of crystalline Gd2O3. J Nanopart Res 13(6):2311–2318CrossRefGoogle Scholar
  44. Koprinarov I, Lippitz A, Friedrich JF, Unger WES, Wöll C (1998) Oxygen plasma induced degradation of the surface of poly(styrene), poly(bisphenol-A-carbonate) and poly(ethylene terephthalate) as observed by soft X-ray absorption spectroscopy (NEXAFS). Polymer 39(14):3001–3009CrossRefGoogle Scholar
  45. Lai H, Bao A, Yang Y, Tao Y, Yang H (2008) Correlation of photoluminescence of (La, Ln) PO4:Eu3+ (Ln = Gd and Y) phosphors with their crystal structures. J Nanopart Res 10(8):1355–1360CrossRefGoogle Scholar
  46. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87(5):901–927CrossRefGoogle Scholar
  47. Lee WJ, Cho MH, Kim YK, Baeck JH, Jeong IS, Jeong K, Chung KB, Kim SY, Ko DH (2010) Changes in Gd2O3 films grown on Si(100) as a function of nitridation temperature and Zr incorporation. Thin Solid Films 518(6):1682–1688CrossRefGoogle Scholar
  48. Lippitz A, Koprinarov I, Friedrich JF, Unger WES, Weiss K, Wöll C (1996) Surface analysis of metallized poly(bisphenol A carbonate) films by X-ray absorption spectroscopy (NEXAFS). Polymer 37(14):3157–3160CrossRefGoogle Scholar
  49. Louis C, Bazzi R, Flores MA, Zheng W, Lebbou K, Tillement O, Mercier B, Dujardin C, Perriat P (2003) Synthesis and characterization of Gd2O3:Eu3+ phosphor nanoparticles by a sol-lyophilization technique. J Solid State Chem 173(2):335–341CrossRefGoogle Scholar
  50. McDonald MA, Watkin KL (2006) Investigations into the physicochemical properties of dextran small particulate gadolinium oxide nanoparticles. Acad Radiol 13(4):421–427CrossRefGoogle Scholar
  51. Mercier F, Alliot C, Bion L, Thromat N, Toulhoat P (2006) XPS study of Eu(III) coordination compounds: core levels binding energies in solid mixed-oxo-compounds EumXxOy. J Electron Spectrosc Relat Phenom 150(1):21–26CrossRefGoogle Scholar
  52. Na HB, Hyeon T (2009) Nanostructured T1 MRI contrast agents. J Mater Chem 19(35):6267–6273CrossRefGoogle Scholar
  53. Nachimuthu P, Thevuthasan S, Engelhard MH, Weber WJ, Shuh DK, Hamdan NM, Mun BS, Adams EM, McCready DE, Shutthanandan V, Lindle DW, Balakrishnan G, Paul DM, Gullikson EM, Perera RCC, Lian J, Wang LM, Ewing RC (2004) Probing cation antisite disorder in Gd2Ti2O7 pyrochlore by site-specific near-edge X-ray-absorption fine structure and X-ray photoelectron spectroscopy. Phys Rev B 70(10):100101CrossRefGoogle Scholar
  54. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, 5th edn. John Wiley & Sons, New YorkGoogle Scholar
  55. Norman P, Bishop DM, Jensen HJAa, Oddershede J (2001) Near-resonant absorption in the time-dependent self-consistent field and multiconfigurational self-consistent field approximations. J Chem Phys 115(22):10323CrossRefGoogle Scholar
  56. Norman P, Bishop DM, Jensen HJAa, Oddershede J (2005) Nonlinear response theory with relaxation: the first-order hyperpolarizability. J Chem Phys 123(19):194103CrossRefGoogle Scholar
  57. Ogasawara H, Kotani A (1995) Calculation of magnetic circular dichroism of rare-earth elements. J Phys Soc Jpn 64(4):1394–1401CrossRefGoogle Scholar
  58. Park JY, Choi ES, Baek MJ, Lee GH, Woo S, Chang Y (2009) Water-soluble ultra small paramagnetic or superparamagnetic metal oxide nanoparticles for molecular MR imaging. Eur J Inorg Chem 17:2477–2481CrossRefGoogle Scholar
  59. Patil KC, Chandrashekhar GV, George MV, Rao CNR (1968) Infrared spectra and thermal decompositions of metal acetates and dicarboxylates. Can J Chem 46(2):257–265CrossRefGoogle Scholar
  60. Peng XM, Huang MX, Gu L, Lin BL, Chen GH (2009) Characteristics of patients with liver disease intravenously exposed to diethylene glycol in China 2006. Clin Toxicol 47(2):124–131CrossRefGoogle Scholar
  61. Petoral RM Jr, Söderlind F, Klasson A, Suska A, Fortin MA, Abrikossova N, Selegård L, Käll P-O, Engström M, Uvdal K (2009) Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: a bifunctional material with combined fluorescent labeling and MRI contrast agent properties. J Phys Chem C 113(17):6913–6920CrossRefGoogle Scholar
  62. Plaschke M, Rothe J, Denecke MA, Fanghänel T (2004) Soft X-ray spectromicroscopy of humic acid europium(III) complexation by comparison to model substances. J Electron Spectrosc Relat Phenom 135(1):53–62CrossRefGoogle Scholar
  63. Rahman AATM, Vasilev K, Majewski P (2011) Ultra small Gd2O3 nanoparticles: absorption and emission properties. J Colloid Interface Sci 354(2):592–596CrossRefGoogle Scholar
  64. Raiser D, Deville JP (1991) Study of XPS photoemission of some gadolinium compounds. J Electron Spectrosc Relat Phenom 57:91–97CrossRefGoogle Scholar
  65. Rieter WJ, Taylor KML, An H, Lin W, Lin W (2006) Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J Am Chem Soc 128(28):9024–9025CrossRefGoogle Scholar
  66. Rowe MD, Chang C-C, Thamm DH, Kraft SL, Harmon JF, Vogt AP, Sumerlin BS, Boyes SG (2009a) Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers. Langmuir 25(16):9487–9499CrossRefGoogle Scholar
  67. Rowe MD, Thamm DH, Kraft SL, Boyes SG (2009b) Polymer-modified gadolinium metal–organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10(4):983–993CrossRefGoogle Scholar
  68. Schep LJ, Slaughter RJ, Temple WA, Beasley DMG (2009) Diethylene glycol poisoning. Clin Toxicol 47(6):525–535CrossRefGoogle Scholar
  69. Schwartz DA, Norberg NS, Nguyen QP, Parker JM, Gamelin DR (2003) Magnetic quantum dots: synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J Am Chem Soc 125(43):13205–13218CrossRefGoogle Scholar
  70. Shu C, Corwin FD, Zhang J, Chen Z, Reid JE, Sun M, Xu W, Sim JH, Wang C, Fatouros PP, Esker AR, Gibson HW, Dorn HC (2009) Facile preparation of a new gadofullerene-based magnetic resonance imaging contrast agent with high 1H relaxivity. Bioconjug Chem 20(6):1186–1193CrossRefGoogle Scholar
  71. Skotland T, Iversen T-G, Sandvig K (2010) New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging. Nanomedicine NBM 6(6):730–737CrossRefGoogle Scholar
  72. Smith PH, Ryan RR (1992) Structure of a gadolinium hexaaza macrocycle complex with a Gd2(OAc)8 counterion. Acta Cryst C 48(12):2127–2130CrossRefGoogle Scholar
  73. Söderlind F, Pedersen H, Petoral RM Jr, Käll P-O, Uvdal K (2005) Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J Colloid Interface Sci 288(1):140–148CrossRefGoogle Scholar
  74. Stöhr J (1992) NEXAFS spectroscopy. Springer series in surface sciences, vol 25. Springer, New YorkGoogle Scholar
  75. Takayama Y, Shinoda M, Obu K, Lee C, Shiozawa H, Hirose M, Ishii H, Miyahara T, Okamoto J (2002) Magnetic circular dichroism of X-ray emission for gadolinium in 4d–4f excitation region. J Phys Soc Jpn 71(1):340–346CrossRefGoogle Scholar
  76. Thole BT, van der Laan G, Fuggle JC, Sawatzky GA, Karnatak RC, Esteva JM (1985) 3d X-ray-absorption lines and the 3d94fn+1 multiplets of the lanthanides. Phys Rev B 32(8):5107–5118CrossRefGoogle Scholar
  77. Toth E, Bolskar RD, Borel A, Gonzalez G, Helm L, Merbach AE, Sitharaman B, Wilson LJ (2005) Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. J Am Chem Soc 127(2):799–805CrossRefGoogle Scholar
  78. Urquhart SG, Ade H (2002) Trends in the carbonyl core \( {\text{(C}}\;{\text{1s, O}}\;{\text{1s)}}\; \to \;\pi _{{\text{C=O}}}^* \)transition in the near-edge X-ray absorption fine structure spectra of organic molecules. J Phys Chem B 106(34):8531–8538CrossRefGoogle Scholar
  79. Vohs JM, Barteau MA (1988) Reaction pathways and intermediates in the decomposition of acetic and propionic acids on the polar surfaces of zinc oxide. Surf Sci 201(3):481–502CrossRefGoogle Scholar
  80. Watts JF, Wolstenholme J (2003) An introduction to surface analysis by XPS and AES. John Wiley & Sons Ltd, ChichesterCrossRefGoogle Scholar
  81. Weller MT (1994) Inorganic materials chemistry. Oxford chemistry primers. Oxford University Press, OxfordGoogle Scholar
  82. Yan B, Gu J, Xiao X (2010) LnPO4:RE3+ (La = La, Gd; RE = Eu, Tb) nanocrystals: solvo-thermal synthesis, microstructure and photoluminescence. J Nanopart Res 12(6):2145–2152CrossRefGoogle Scholar
  83. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393(1–3):51–57CrossRefGoogle Scholar
  84. Zhang MF, Liu JM, Liu ZG (2004) Microstructural characterization of nanosized YMnO3 powders: the size effect. Appl Phys A 79(7):1753–1756Google Scholar
  85. Zhang J, Fatouros PP, Shu C, Reid J, Owens LS, Cai T, Gibson HW, Long GL, Corwin FD, Chen Z-J, Dorn HC (2010a) High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality. Bioconjug Chem 21(4):610–615CrossRefGoogle Scholar
  86. Zhang X, Ballem MA, Ahrén M, Suska A, Bergman P, Uvdal K (2010b) Nanoscale Ln(III)-carboxylate coordination polymers (Ln = Gd, Eu, Yb): temperature-controlled guest encapsulation and light harvesting. J Am Chem Soc 132(30):10391–10397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Maria Ahrén
    • 1
  • Linnéa Selegård
    • 1
  • Fredrik Söderlind
    • 2
  • Mathieu Linares
    • 3
  • Joanna Kauczor
    • 3
  • Patrick Norman
    • 3
  • Per-Olov Käll
    • 4
  • Kajsa Uvdal
    • 1
  1. 1.Division of Molecular Surface Physics and Nanoscience, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
  2. 2.Division of Nanostructured Materials, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
  3. 3.Division of Computational Physics, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden
  4. 4.Division of Chemistry, Department of Physics, Chemistry and Biology (IFM)Linköping UniversityLinköpingSweden

Personalised recommendations