Advertisement

Influence of different synthesis approach on doping behavior of silver nanoparticles onto the iron oxide–silica coreshell surfaces

  • Norsuria Mahmed
  • Hua Jiang
  • Oleg Heczko
  • Outi Söderberg
  • Simo-Pekka Hannula
Research Paper

Abstract

Silver (Ag) nanoparticles with the crystallite size ranging from 13–24 nm were successfully doped onto the surface of iron oxide–silica coreshell particles. In the process, iron oxide particles having a size distribution within 8–19 nm were prepared by using a reverse co-precipitation method followed by the formation of iron oxide-core with silica shell (with 50–150 nm diameter of silica spheres) by using a modified Stöber method. The reduction of Ag ions was done at room temperature in a solution containing polyvinylpyrrolidone and ethanol by using mechanical and ultrasonic mixing. Four different synthesis approaches were used in doping of Ag nanoparticles. The phase, morphology, optical and magnetic properties of the synthesized powders were characterized by using X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope, UV–visible spectrometer (UV–Vis) and vibrating sample magnetometer. Spherical morphology of the Ag nanoparticles was found to deposit on the iron oxide-silica surfaces. The particle size distribution is depending on the synthesis approach used. The UV–Vis absorption peak at 404–410 nm of wavelength confirmed the existence of the Ag nanoparticles.

Keywords

Stöber method Silver nanoparticles Iron oxide Amorphous silica 

Notes

Acknowledgments

The support of Finnish Academy via the Graduate School of Advanced Materials and Processes at Aalto University to N. Mahmed is gratefully acknowledged.

References

  1. Bragg WH (1915) The structure of magnetite and the spinels. Nature 95:561CrossRefGoogle Scholar
  2. Carotenuto G, Pepe GP, Nicolais L (2000) Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur Phys J B 11:11–17CrossRefGoogle Scholar
  3. Chiswick HH, Hultgren R (1940) An X-ray study of the alloys of silver with lead bismuth and thallium. Trans Am Inst Min Metall Pet Eng 137:442–446Google Scholar
  4. Choi O, Deng KK, Kim N-J, Ross JL, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074CrossRefGoogle Scholar
  5. Choi M, Shin K-H, Jang J (2010) Plasmonic photocatalyst system using silver chloride/silver nanostructures under visible light. J Colloid Interface Sci 341:83–87CrossRefGoogle Scholar
  6. Chou K-S, Ren C-Y (2000) Synthesis of nanosize silver nanoparticle by chemical reduction method. Mater Chem Phys 64:241–246CrossRefGoogle Scholar
  7. Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  8. Evanoff DD, Chumanov G (2005) Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 6:1221–1231CrossRefGoogle Scholar
  9. Flores JC, Torres V, Popa M, Crespo D, Calderon-Moreno JM (2008) Variations in morphologies of silver nanoshells on silica spheres. Colloids Surf A 330:86–90Google Scholar
  10. Guzenko NV, Pakhlov EM, Lipkovskaya NA, Voronin EF (2001) Sorption modification of fine silica with polyvinypyrrolidone. Russ J Appl Chem 74:2017–2020CrossRefGoogle Scholar
  11. He R, Qian X, Yin J, Zhu Z (2002) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12:3783–3786CrossRefGoogle Scholar
  12. Hoppe CE, Lazzari M, Pardinas-Blanco I, Lopez-Quintella MA (2006) One-step synthesis of gold and silver hydrolysis using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 22:7027–7034CrossRefGoogle Scholar
  13. Hu H, Wang Z, Pan L, Zhao S, Zhu S (2010) Ag-coated Fe3O4-SiO2 three-ply composite microspheres: synthesis, characterization and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 144:7738–7742CrossRefGoogle Scholar
  14. Huang C-K, Chen C-Y, Han J-L, Chen C–C, Jiang M-D, Hsu J-S, Chan C-H, Hsieh K-H (2010) Immobilization of silver nanoparticles on silica microspheres. J Nanopart Res 12:199–207CrossRefGoogle Scholar
  15. Jiang J, Zhang L (2011) Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylight-driven plasmonic photocatalysis. Chem Eur J 17:3710–3717CrossRefGoogle Scholar
  16. Jiang Z-J, Liu C-Y, Sun L-W (2005) Catalytic properties of silver nanoparticles supported on silica spheres. J Phys Chem B 109:1730–1735CrossRefGoogle Scholar
  17. Jun B-H, Noh MS, Kim J, Kim G, Kang H, Kim M-S, Seo Y-T, Baek J, Kim J-H, Park J, Kim S, Kim Y-K, Hyeon T, Cho M-H, Jeong DH, Lee Y-S (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their application. Small 6:119–125CrossRefGoogle Scholar
  18. Kalele SA, Ashtaputre SS, Hebalkar NY, Gosai SW, Deobangkar DN, Deobangkar DD, Kulkarni SS (2005) Optical detection of antibody using silica-silver core-shell particles. Chem Phys Lett 404:136–141CrossRefGoogle Scholar
  19. Kim JS (2007) Reduction of silver nitrate in ethanol by poly(N-vinyllpyrrolidone). J Ind Eng Chem 13:566–570Google Scholar
  20. Lee J-M, Kim D-W, Kim T-H, Oh S-G (2007) Facile route for preparation of silica-silver heterogeneous nanocomposites particles using alcohol reduction method. Mater Lett 61:1558–1562CrossRefGoogle Scholar
  21. Lu Z, Dai J, Song X, Wang G, Yang W (2008) Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloids Surf A 317:450–456CrossRefGoogle Scholar
  22. Luo N, Mao L, Jiang L, Zhang J, Wu Z, Wu D (2009) Directly ultraviolet photochemical deposition of silver nanoparticles on silica spheres: preparation and characterization. Mater Lett 63:154–156CrossRefGoogle Scholar
  23. Lv B, Xu Y, Tian H, Wu D, Sun Y (2010) Synthesis of Fe3O4/SiO2/Ag nanoparticles and its application in surface-enhanced Raman scattering. J Solid State Chem 183:2968–2973Google Scholar
  24. Mahmed N, Heczko O, Söderberg O, Hannula S-P (2011) Room temperature synthesis of magnetite (Fe3-δO4) nanoparticles by a simple reverse co-precipitation method. IOP Conf Ser Mater Sci Eng 18:032020CrossRefGoogle Scholar
  25. Pal A, Shah S, Devi S (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114:530–532CrossRefGoogle Scholar
  26. Quang DV, Sarawade PB, Hilonga A, Park SD, Kim J-K, Kim HT (2011) Facile route for preparation of silver nanoparticle-coated precipitated silica. Appl Surf Sci 257:4250–4256CrossRefGoogle Scholar
  27. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L.). Nano Biomed Eng 3:174–178Google Scholar
  28. Royer L (1925) Sur les accolements réguliers de cristaux d’espéces différentes. C R Hebd Seances Acad Sci 180:2050–2052Google Scholar
  29. Sileikaite A, Prosycevas I, Puiso J, Juraitis A, Guobiene A (2006) Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater Sci 12:287–291Google Scholar
  30. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326CrossRefGoogle Scholar
  31. Toki M, Chow TY, Ohnaka T, Samura H, Saegusa T (1992) Structure of poly(vinylpyrrolidone)–silica hybrid. Polym Bull 29:653–660CrossRefGoogle Scholar
  32. Wiley BJ, Im SH, Z-Y L, McLellan J, Siekkinen A, Xia Y (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J Phys Chem B 110:15666–15675CrossRefGoogle Scholar
  33. Wu C, Mosher BP, Lyons K, Zeng T (2010) Reducing ability and mechanism for polyvinylpyrrolidone (PVP) in silver nanoparticles synthesis. J Nanosci Nanotechnol 10:2342–2347CrossRefGoogle Scholar
  34. Xu R, Wang D, Zhang J, Li Y (2006) Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem Asian J 1:888–893CrossRefGoogle Scholar
  35. Ye X, Zhou Y, Chen J, Sun Y (2007) Deposition of silver nanoparticles on silica spheres via ultrasound irradiation. Appl Surf Sci 253:6264–6267CrossRefGoogle Scholar
  36. Zhang DB, Cheng HM, Ma JM (2001) Synthesis of silver-coated silica nanoparticles in nonionic reverse micelles. J Mater Sci Lett 20:439–440CrossRefGoogle Scholar
  37. Zhang X, Niu H, Yan J, Cai Y (2011) Immobilizing silver nanoparticles onto the surface of magnetic silica composite to prepare magnetic disinfectant with enhanced stability and antibacterial activity. Colloids Surf A 375:186–192CrossRefGoogle Scholar
  38. Zhu M, Chen P, Liu M (2011) Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. J Mater Chem 21:16413CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Norsuria Mahmed
    • 1
    • 4
  • Hua Jiang
    • 2
  • Oleg Heczko
    • 3
  • Outi Söderberg
    • 1
  • Simo-Pekka Hannula
    • 1
  1. 1.Department of Materials Science and EngineeringAalto University School of Chemical TechnologyAaltoFinland
  2. 2.Department of Applied PhysicsAalto University School of ScienceAaltoFinland
  3. 3.Institute of PhysicsAcademy of SciencesPraha 8Czech Republic
  4. 4.School of Materials EngineeringKompleks Pusat Pengajian UniMAP, Taman Muhibbah, Universiti Malaysia PerlisJejawiMalaysia

Personalised recommendations