Preparation of amino acid nanoparticles at varying saturation conditions in an aerosol flow reactor

  • Janne Raula
  • Matti Lehtimäki
  • Maarit Karppinen
  • Maxim Antopolsky
  • Hua Jiang
  • Antti Rahikkala
  • Esko I. Kauppinen
Research Paper

Abstract

Nanoparticle formation of five amino acids, glycine, l-proline, l-valine, l-phenylalanine, and l-leucine was studied. The aim was to explore factors determining nanoparticle formation and crystallinity. The amino acid nanoparticles have been prepared at different saturation conditions in the aerosol reactor. In a condensed state, the particles were formed by droplet drying. The raise in temperature induced the sublimation of amino acids from the aerosol particles. The amino acid vapor was condensed by physical vapor deposition in a rapid cooling process. The diffusion coefficients and nucleation rates of amino acids have been calculated to understand particle formation. Upon the vapor deposition, amino acids formed crystalline nanoparticles except in the case l-phenylalanine according to X-ray diffraction. The crystal polymorph of glycine in the nanoparticles depended on the applied reactor temperature. The preference of crystallographic orientation varied in both the particle formations from condensed and vapor phase. l-Valine, l-phenylalanine, and l-leucine formed leafy-looking particles. These results could be utilized in the fabrication of nano-sized asperities on drug particle surfaces to reduce forces between particles and accordingly increase particle dispersion in dry powder inhalers.

Keywords

Aerosol Nanoparticles Amino acid Physical vapor deposition 

Notes

Acknowledgments

We thank the Academy of Finland (project no. 133407 and 140362) for financial support.

Supplementary material

11051_2012_986_MOESM1_ESM.docx (189 kb)
Supplementary material 1 (DOCX 189 kb)

References

  1. Amelin AG (1972) Theoretical foundation of mist formation at the vapor condensation. Khimiya, MoscowGoogle Scholar
  2. Budavari S (ed) (1989) The Merck Index 11th. Merck & Co, RahwayGoogle Scholar
  3. Chew NYK, Chan H-K (2001) Use of solid corrugated particles to enhance powder aerosol performance. Pharm Res 18:1570–1577CrossRefGoogle Scholar
  4. Chew NYK, Shekunov BY, Tong HHY, Chow AHL, Savage C, Wu J, Chan H-K (2005) Effect of amino acids on the dispersion of disodium cromoglycate powders. J Pharm Sci 94:2289–2300CrossRefGoogle Scholar
  5. Fults KA, Miller IF, Hickey AJ (1997) Effect of particle morphology on emitted dose of fatty acid-treated disodium cromoglycate powder aerosols. Pharm Dev Technol 2:67–79CrossRefGoogle Scholar
  6. Gonda I (1981) Study of the effect of polydispersity of aerosols on regional deposition in the respiratory tract. J Pharm Pharmacol 33(suppl.):52PGoogle Scholar
  7. Gould RO, Gray AM, Taylor P, Walkinshaw MD (1985) Crystal environments and geometries of leucine, isoleucine, valine, and phenylalanine provide estimates of minimum nonbonded contact and preferred van der Waals interaction distances. J Am Chem Soc 107:5921–5927CrossRefGoogle Scholar
  8. Gross D, Grodsky G (1955) On the sublimation of amino acids and peptides. J Am Chem Soc 77:1678–1680CrossRefGoogle Scholar
  9. Grunenberg A, Bougeard D, Schrader B (1984) DSC-investigations of 22 crystalline neutral aliphatic amino acids in the temperature range 233 to 423 K. Thermochim Acta 77:59–66CrossRefGoogle Scholar
  10. Hasegawa K, Miyashita S, Komatsu H, Sano C, Nagashima N (1996) In situ observation of the concentration gradient layer around a growing crystal of leucine complex. J Cryst Growth 166:925–929CrossRefGoogle Scholar
  11. Hickey AJ, Concessio NM, Van Oort MM, Platz RM (1994) Factors influencing the deagglomeration of dry powders as aerosols. Pharm Technol 18:58–82Google Scholar
  12. Incropera FP, DeWitt DP (2002) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York, pp 846–847Google Scholar
  13. Jonat S, Hasenzahl S, Gray A, Schmidt PC (2004) Mechanism of glidants: investigation of the effect of different colloidal silicon dioxide types on powder flow by atomic force and scanning electron microscopy. J Pharm Sci 93:2635–2644CrossRefGoogle Scholar
  14. Katainen J, Paajanen M, Ahtola E, Pore V, Lahtinen J (2006) Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci 304:524–529CrossRefGoogle Scholar
  15. Laaksonen T, Liu P, Rahikkala A, Peltonen L, Kauppinen EI, Hirvonen J, Järvinen K, Raula J (2011) Intact nanoparticulate indomethacin in fast dissolving carrier particles by combined wet milling and aerosol flow reactor methods. Pharm Res 28:2403–2411CrossRefGoogle Scholar
  16. Lähde A, Raula J, Kauppinen EI (2008a) Simultaneous synthesis and coating of salbutamol sulphate nanoparticles with l-leucine in the gas phase. Int J Pharm 358:256–262CrossRefGoogle Scholar
  17. Lähde A, Raula J, Kauppinen EI (2008b) Combined synthesis and in situ coating of nanoparticles in the gas phase. J Nanoparticle Res 10:121–130CrossRefGoogle Scholar
  18. Lähde A, Raula J, Kauppinen EI (2008c) Production of l-leucine nanoparticles under various conditions using an aerosol flow reactor method. J Nanomater, Article ID 680897Google Scholar
  19. Lechuga-Ballesteros D, Kuo M-C (2001) Dry powder compositions having improved dispersivity. WO 01/32144Google Scholar
  20. Li H-Y, Seville PC, Williamson IJ, Birchall JC (2005) The use of amino acids to enhance the aerosolisation of spray-dried powders for pulmonary gene therapy. J Gene Med 7:343–353CrossRefGoogle Scholar
  21. Li Q, Rudolph V, Peukert W (2006a) London-van der Waals adhesiveness of rough particles. Powder Technol 161:248–255CrossRefGoogle Scholar
  22. Li J, Wang Z, Yanga X, Hua L, Liu Y, Wang C (2006b) Decomposing or subliming? An investigation of thermal behavior of l-leucine. Thermochim Acta 447:147–153CrossRefGoogle Scholar
  23. Li J, Liu Y, Shi J, Wang Z, Hu L, Yang X, Wang C (2008) The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR. Thermochim Acta 467:20–29CrossRefGoogle Scholar
  24. Lide DR (ed) (2003) CRC handbook of chemistry and physics, 84th edn. CRC Press, Boca RatonGoogle Scholar
  25. Lien YC, Nawar WW (1974a) Thermal decomposition of some amino acids. Valine, leucine and lsoleucine. J Food Sci 39:911–913CrossRefGoogle Scholar
  26. Lien YC, Nawar WW (1974b) Thermal decomposition of some amino acids. Alanine and β-alanine. J Food Sci 39:914–916CrossRefGoogle Scholar
  27. Liu Z, Zhong L, Ying P, Feng Z, Li C (2008) Crystallization of metastable β glycine from gas phase via the sublimation of α or γ form in vacuum. Biophys Chem 132:18–22CrossRefGoogle Scholar
  28. Lucas P, Anderson K, Staniforth JN (1998) Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Pharm Res 15:562–569CrossRefGoogle Scholar
  29. Manne S, Cleveland JP, Stucky GD, Hansma PK (1993) Lattice resolution and solution kinetics on surfaces of amino acid crystals: an atomic force microscope study. J Cryst Growth 130:333–340CrossRefGoogle Scholar
  30. Matubayasi N, Miyamoto H, Namihira J, Yano K, Tanaka T (2002) Thermodynamic quantities of surface formation of aqueous electrolyte solutions V. Aqueous solutions of aliphatic amino acids. J Colloid Interface Sci 250:431–437CrossRefGoogle Scholar
  31. Meyer K, Zimmermann I (2004) Effect of glidants in binary powder mixtures. Powder Technol 139:40–54CrossRefGoogle Scholar
  32. Paajanen M, Katainen J, Raula J, Kauppinen EI, Lahtinen J (2009) Direct evidence on reduced adhesion of salbutamol sulphate particles due to l-leucine coating. Powder Technol 192:6–11CrossRefGoogle Scholar
  33. Phillips RD, Melius P (1974) The thermal polymerization of amino acids: the role and fate of the reactants. Int J Pept Protein Res 6:309–319CrossRefGoogle Scholar
  34. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces. J Colloid Interface Sci 232:17–24CrossRefGoogle Scholar
  35. Raula J, Kuivanen A, Lähde A, Jiang H, Antopolsky M, Kansikas J, Kauppinen EI (2007) Synthesis of l-leucine nanoparticles via physical vapor deposition under various saturation conditions. J Aerosol Sci 38:1172–1184CrossRefGoogle Scholar
  36. Raula J, Lähde A, Kauppinen EI (2008a) A novel gas phase method for the combined synthesis and coating of pharmaceutical particles. Pharm Res 25:242–245CrossRefGoogle Scholar
  37. Raula J, Kuivanen A, Lähde A, Kauppinen EI (2008b) Gas-phase synthesis of l-leucine-coated micrometer-sized salbutamol sulphate and sodium chloride particles. Powder Technol 187:289–297CrossRefGoogle Scholar
  38. Raula J, Thielmann F, Kansikas J, Hietala S, Annala M, Seppälä J, Lähde A, Kauppinen EI (2008c) Investigations on the humidity-induced transformations of salbutamol sulphate particles coated with l-leucine. Pharm Res 25:2250–2261CrossRefGoogle Scholar
  39. Raula J, Lähde A, Kauppinen EI (2009) Aerosolization behavior of carrier-free l-leucine coated salbutamol sulphate powders. Int J Pharm 365:18–25CrossRefGoogle Scholar
  40. Raula J, Thielmann F, Naderi M, Lehto V-P, Kauppinen EI (2010) Influence on particle surface characteristics vs. dispersion behaviour of l-leucine coated carrier-free inhalable powders. Int J Pharm 385:79–85CrossRefGoogle Scholar
  41. Reid RR, Prausnitz JM, Poling BE (1987) The properties of gases and liquids, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  42. Rodante F, Marrosu G (1990) Thermal analysis of some α-amino acids using simultaneous TG-DSC apparatus. The use of dynamic thermogravimetry to study the chemical kinetics of solid state decomposition. Thermochim Acta 171:15–29CrossRefGoogle Scholar
  43. Rodante F, Marrosu G, Catalani G (1992) Thermal analysis of some α-amino acids with similar structures. Thermochim Acta 194:197–213CrossRefGoogle Scholar
  44. Shekunov BY, Feeley JC, Chow AHL, Tong HHY, York P (2003) Aerosolization behaviour of micronized and supercritically-processed powders. Aerosol Sci 34:553–568CrossRefGoogle Scholar
  45. Sohn M, Ho C-T (1995) Ammonia generation during thermal degradation of amino acids. J Agric Food Chem 43:3001–3003CrossRefGoogle Scholar
  46. Staniforth JN (1997) Improvements in or relating to powders for use in dry powder inhalers. WO 97/03649Google Scholar
  47. Steinberg S, Bada JL (1981) Diketopiperazine formation during investigations of amino acid racemization in dipeptides. Science 213:544–545CrossRefGoogle Scholar
  48. Svec HJ, Clyde DD (1965) Vapour pressures of some α-amino acids. J Chem Eng Data 10:151–152CrossRefGoogle Scholar
  49. Takaoka O, Yamagata Y, Inomata K (1991) Diketopiperazine-mediated peptide formation in aqueous solution. II. Catalytic effect of phosphate. Orig Life Evol Biosph 21:113–118CrossRefGoogle Scholar
  50. Watry MR, Richmond GL (2002) Orientation and conformation of amino acids in monolayers adsorbed at an oil/water interface as determined by vibrational sum-frequency spectroscopy. J Phys Chem B 106:12517–12523CrossRefGoogle Scholar
  51. Yuan M, Deng X (2001) Synthesis and characterization of poly(ethylene glycol)-block-poly(amino acid) copolymer. Eur Polym J 37:1907–1912CrossRefGoogle Scholar
  52. Zeng XM, Martin GP, Marriott C (2001) Particulate interactions in dry powder formulations for inhalation. Taylor & Francis, LondonCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Janne Raula
    • 1
  • Matti Lehtimäki
    • 2
  • Maarit Karppinen
    • 2
  • Maxim Antopolsky
    • 3
  • Hua Jiang
    • 1
  • Antti Rahikkala
    • 1
  • Esko I. Kauppinen
    • 1
  1. 1.Department of Applied PhysicsAalto University School of ScienceAalto, EspooFinland
  2. 2.Department of ChemistryAalto University School of Chemical TechnologyAalto, EspooFinland
  3. 3.Drug Discovery and Development Technology CenterUniversity of HelsinkiHelsinkiFinland

Personalised recommendations