Advertisement

Nickel nanoparticles in carbon structures prepared by solid-phase pyrolysis of nickel-phthalocyanine

  • A. S. Manukyan
  • A. A. Mirzakhanyan
  • G. R. Badalyan
  • G. H. Shirinyan
  • A. G. Fedorenko
  • N. V. Lianguzov
  • Yu I. Yuzyuk
  • L. A. Bugaev
  • E. G. Sharoyan
Research Paper

Abstract

By using a modified method of solid-phase pyrolysis of metal-phthalocyanines, we have synthesized ferromagnetic Ni nanoparticles in different carbon structures: amorphous carbon plates, multiwall carbon nanotubes, carbon fibers, and graphitized capsules. The composition, structure and morphology of prepared composite materials have been studied by energy dispersive X-ray microanalysis, scanning and transmission electron microscopy, and X-ray diffraction technique. It has been found that the sizes of nickel nanoparticles (10–500 nm) and the type of carbon structures strongly depend on the pyrolysis conditions. By using the X-band ferromagnetic resonance measurements, we have revealed features of the temperature dependence of resonance spectra of single-domain and multi-domain Ni nanoparticles in Ni/C composites.

Keywords

Nickel-phthalocyanine Solid-phase pyrolysis Nickel nanoparticles Carbon nanostructures Magnetic properties 

Notes

Acknowledgments

This work was supported by the grants of the International Innovative Nanotechnology Center (ININC) CIS No.10881, ANSEF No. PS-CONDMATEX-1199 and Republic of Armenia No. 65. We are grateful to T. K. Khachatryan for assistance in the measurements.

References

  1. Bai L, Wan H, Street Sh (2009) Preparation of ultrafine FePt nanoparticles by chemical reduction in PAMAM-OH template. Colloids Surf A 349:23–28CrossRefGoogle Scholar
  2. Chen Y, Yu J (2005) Growth direction control of aligned carbon nanotubes. Carbon 43:3183–3186CrossRefGoogle Scholar
  3. Gusev AI (2009) Nanomaterials, nanostructures, nanotechnologies. Fizmatlit, MoscowGoogle Scholar
  4. Huang S, Dai L (2002) Microscopic and macroscopic structures of carbon nanotubes produced by pyrolysis of iron phthalocyanine. J Nanoparticle Res 4:145–155CrossRefGoogle Scholar
  5. Jao J, Seraphin S, Wang X, Withers J (1996) Preparation and properties of ferromagnetic carbon-coated Fe, Co and Ni nanoparticles. J Appl Phys 80:103–108CrossRefGoogle Scholar
  6. Klinke C, Kern K (2007) Iron nanoparticle formation in a metal-organic matrix: from ripening to gluttony. Nanotechnology 18:4–215601CrossRefGoogle Scholar
  7. Manukyan AS, Mirzakhanyan AA, Badalyan GR, Shirinyan GH, Sharoyan EG (2010) Preparation and characterization of nickel nanoparticles in different carbon matrices. J Contemp Phys 45:132–136CrossRefGoogle Scholar
  8. Mirzakhanyan AA, Manukyan AS, Badalyan GR, Khachatryan TK, Maslova OA, Yuzyuk YI, Bugaev LA, Sharoyan EG (2010) Raman spectra of nickel–carbon nanocomposites. Proc SPIE 7998:79981B-1–79981B-4Google Scholar
  9. Petrov YI (1986) Clusters and fine particles. Nauka, MoscowGoogle Scholar
  10. Sharoyan VE, Harutyunyan AR (1993) Production of small cobalt particles. J Contemp Phys 28:28–32Google Scholar
  11. Sharoyan EG, Manukyan AS, Mirzakhanyan AA, Badalyan GR, Aghababyan EA, Harutyunyan NP (2009a) Preparation and characterization of Ni–Cu magnetic nanoparticles in pyrolytic carbon. In: Proceedings of the 7th international conference semiconductor micro- and nanoelectronics. Tsakhcadzor, Armenia, pp 195–198Google Scholar
  12. Sharoyan EG, Manukyan AS, Mirzakhanyan AA, Badalyan GR, Maloyan HG, Zakharyan RV, Nurijanyan MKh and Asatryan HR (2009b) Preparation and magnetic properties of carbon-coated Ni–Cu nanoalloys for self-regulating hyperthermia. In: Proceedings of the conference laser physics–2008. Ashtarak, Armenia, pp 9–12Google Scholar
  13. Shulepov SV (1972) Physics of carbon–graphite materials. Metallurgiya, MoscowGoogle Scholar
  14. Song J, Sun M, Chen Q, Wang J, Zhang G, Xue Z (2004) Field emission from carbon nanotube arrays fabricated by pyrolysis of iron phthalocyanine. J Phys D Appl Phys 37:5–9CrossRefGoogle Scholar
  15. Suenaga K, Yudasaka M, Colliex C, Iijima S (2000) Radially modulated nitrogen distribution in CNx nanotubular structures prepared by CVD using Ni phthalocyanine. Chem Phys Lett 316:365–367CrossRefGoogle Scholar
  16. Zhang XF, Dong XL, Hwang H, Liu YY, Wang WN, Zhu XG, Lv B, Lei JP (2006) Microwave absorbtion properties of the carbon-coated nickel nanoparticles. Appl Phys Lett 89:053115-1–053115-3Google Scholar
  17. Zhi L, Kolb U, Mullen K (2006) Novel carbon nanostructures prepared by solid-state pyrolysis of iron phthalocyanine. New Carbon Mater 21:109–113Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. S. Manukyan
    • 1
  • A. A. Mirzakhanyan
    • 1
  • G. R. Badalyan
    • 1
  • G. H. Shirinyan
    • 1
  • A. G. Fedorenko
    • 2
  • N. V. Lianguzov
    • 2
  • Yu I. Yuzyuk
    • 2
  • L. A. Bugaev
    • 2
  • E. G. Sharoyan
    • 1
  1. 1.Institute for Physical ResearchNational Academy of SciencesAshtarakArmenia
  2. 2.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations