Limitations and information needs for engineered nanomaterial-specific exposure estimation and scenarios: recommendations for improved reporting practices

  • Katherine Clark
  • Martie van Tongeren
  • Frans M. Christensen
  • Derk Brouwer
  • Bernd Nowack
  • Fadri Gottschalk
  • Christian Micheletti
  • Kaspar Schmid
  • Rianda Gerritsen
  • Rob Aitken
  • Celina Vaquero
  • Vasileios Gkanis
  • Christos Housiadas
  • Jesús María López de Ipiña
  • Michael Riediker
Research Paper
Part of the following topical collections:
  1. Nanotechnology, Occupational and Environmental Health

Abstract

The aim of this paper is to describe the process and challenges in building exposure scenarios for engineered nanomaterials (ENM), using an exposure scenario format similar to that used for the European Chemicals regulation (REACH). Over 60 exposure scenarios were developed based on information from publicly available sources (literature, books, and reports), publicly available exposure estimation models, occupational sampling campaign data from partnering institutions, and industrial partners regarding their own facilities. The primary focus was on carbon-based nanomaterials, nano-silver (nano-Ag) and nano-titanium dioxide (nano-TiO2), and included occupational and consumer uses of these materials with consideration of the associated environmental release. The process of building exposure scenarios illustrated the availability and limitations of existing information and exposure assessment tools for characterizing exposure to ENM, particularly as it relates to risk assessment. This article describes the gaps in the information reviewed, recommends future areas of ENM exposure research, and proposes types of information that should, at a minimum, be included when reporting the results of such research, so that the information is useful in a wider context.

Keywords

Nanomaterials Exposure assessment Risk assessment Modeling REACH Environmental and health effects 

Supplementary material

11051_2012_970_MOESM1_ESM.pdf (223 kb)
Supplementary material 1 (PDF 222 kb)

References

  1. Auffan M, Pedeutour M, Rose J, Masion A, Ziarelli F, Borschneck D, Chaneac C, Botta C, Chaurand P, Labille J, Bottero JY (2010) Structural degradation at the surface of a TiO2-based nanomaterial used in cosmetics. Environ Sci Technol 44:2689–2694CrossRefGoogle Scholar
  2. Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM, Monteiro-Riviere NA, Oberdorster G, Omenn GS, Pinkerton KE, Ramos KS, Rest KM, Sass JB, Silbergeld EK, Wong BA (2007) Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect 115:1654–1659CrossRefGoogle Scholar
  3. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ecetoc. Part Fibre Toxicol 3:11CrossRefGoogle Scholar
  4. Bouwmeester H, Lynch I, Marvin HJ, Dawson KA, Berges M, Braguer D, Byrne HJ, Casey A, Chambers G, Clift MJ, Elia G, Fernandes TF, Fjellsbo LB, Hatto P, Juillerat L, Klein C, Kreyling WG, Nickel C, Riediker M, Stone V (2011) Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1–11CrossRefGoogle Scholar
  5. Boxall ABA, Chaudhry Q, Jones A, Jefferson B, Watts CD (2008) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Sand Hutton, UKGoogle Scholar
  6. Brouwer D (2010) Exposure to manufactured nanoparticles in different workplaces. Toxicology 269:120–127CrossRefGoogle Scholar
  7. Brouwer DH, Semple S, Marquart J, Cherrie JW (2001) A dermal model for spray painters. Part i: subjective exposure modelling of spray paint deposition. Ann Occup Hyg 45:15–23Google Scholar
  8. Brouwer DH, Berges M, Virji MA, Fransman W, Bello D, Hodson L, Gabriel S, Tielemans E (2012) Harmonization of measurement strategies for exposure to manufactured nano-objects: Report of a workshop. Annal Occup Hyg 56(1):1–9. doi:10.1093/annhyg/mer099 CrossRefGoogle Scholar
  9. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728CrossRefGoogle Scholar
  10. ECETOC (2011) Targeted risk assessment (tra) tools. http://www.ecetoc.org/tra. Accessed 25 May 2011
  11. ECHA (2008) Guidance on information requirements and chemical safety assessment. Part d: exposure scenario building (Version 1.1). European Chemicals Agency (ECHA). Helsinki, FinlandGoogle Scholar
  12. Fransman W, Cherrie J, van Tongeren M, Schneider T, Tischer M, Schinkel J, Marquart H, Warren N, Kromhout H, Tielemans E (2009) Development of a mechanistic model for the advanced reach tool (art). TNO Quality of Life, Zeist, The NetherlandsGoogle Scholar
  13. Geranio L, Heuberger M, Nowack B (2009) The behavior of silver nanotextiles during washing. Environ Sci Technol 43:8113–8118CrossRefGoogle Scholar
  14. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRefGoogle Scholar
  15. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  16. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29:1036–1048Google Scholar
  17. ICON (2008) Towards predicting nano-biointeractions: an international assessment of nanotechnology environment, health and safety research needs. International Council on Nanotechnology; Rice University, Houston, TXGoogle Scholar
  18. Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239CrossRefGoogle Scholar
  19. Köhler A, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Cleaner Prod 16:927–937CrossRefGoogle Scholar
  20. Koponen IK, Jensen KA, Schneider T (2011) Comparison of dust released from sanding conventional and nanoparticle-doped wall and wood coatings. J Expo Sci Environ Epidemiol 21:408–415CrossRefGoogle Scholar
  21. Linkov I, Satterstrom FK, Monica JCJ, Hansen SF, Davis TA (2009) Nano risk governance: current developments and future perspectives. Nanotechnol Law Bus 202:203–220Google Scholar
  22. Marquart H, Heussen H, Le Feber M, Noy D, Tielemans E, Schinkel J, West J, Van Der Schaaf D (2008) ‘Stoffenmanager’, a web-based control banding tool using an exposure process model. Ann Occup Hyg 52:429–441CrossRefGoogle Scholar
  23. Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120(Suppl 1):S109–S129CrossRefGoogle Scholar
  24. Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD (2007) Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 4:D125–D130CrossRefGoogle Scholar
  25. Methner M, Hodson L, Geraci C (2010) Nanoparticle emission assessment technique (neat) for the identification and measurement of potential inhalation exposure to engineered nanomaterials–part a. J Occup Environ Hyg 7:127–132CrossRefGoogle Scholar
  26. Nieuwenhuijsen M (ed) (2003) Exposure assessment in occupational and environmental epidemiology. Oxford University Press, OxfordGoogle Scholar
  27. Nyland JF, Silbergeld EK (2009) A nanobiological approach to nanotoxicology. Hum Exp Toxicol 28:393–400CrossRefGoogle Scholar
  28. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  29. Royal Society (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Science Policy Section, The Royal Society and the Royal Academy of Engineering, LondonGoogle Scholar
  30. Savolainen K, Alenius H, Norppa H, Pylkkanen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies–a review. Toxicology 269:92–104CrossRefGoogle Scholar
  31. Schneider T, Brouwer DH, Koponen IK, Jensen KA, Fransman W, Van Duuren-Stuurman B, Van Tongeren M, Tielemans E (2011) Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expo Sci Environ Epidemiol 21:450–463CrossRefGoogle Scholar
  32. Seipenbusch M, Binder A, Kasper G (2008) Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occ Hyg 52:707–716CrossRefGoogle Scholar
  33. Szymczak W, Menzel N, Keck L (2007) Emissions of ultrafine copper particles by universal motrols controlled by phase angle modulation. J Aerosol Sci 38:520–531CrossRefGoogle Scholar
  34. US EPA (2009) Integrated science assessment for particulate matter. National Center for Environmental Assessment—RTP Division; Office of Research and Development; United States Environmental Protection Agency. Research Triangle Park, NC: EPA/600/R-608/139FGoogle Scholar
  35. van Hemmen JJ, Auffarth J, Evans PG, Rajan-Sithamparanadarajah B, Marquart H, Oppl R (2003) Riskofderm: risk assessment of occupational dermal exposure to chemicals. An introduction to a series of papers on the development of a toolkit. Ann Occup Hyg 47:595–598CrossRefGoogle Scholar
  36. van Tongeren M (2011) Project final report: development of exposure scenarios for nanomaterials (NANEX). FP7 project number 247794. www.nanex-project.eu. Accessed 7 Sep 2011
  37. van Veen M (1995) Consexpo a program to estimate consumer product exposure and uptake. RIVM. Bilthoven, the NetherlandsGoogle Scholar
  38. von der Kammer F, Legros S, Larsen E, Loescher K, Hofmann T (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. Trends Anal Chem 30:425–436CrossRefGoogle Scholar
  39. Zartarian V, Bahadori T, McKone T (2005) Adoption of an official ISEA glossary. J Expo Sci Environ Epidemiol 15:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Katherine Clark
    • 1
    • 8
  • Martie van Tongeren
    • 2
  • Frans M. Christensen
    • 3
    • 9
  • Derk Brouwer
    • 4
  • Bernd Nowack
    • 5
  • Fadri Gottschalk
    • 5
  • Christian Micheletti
    • 3
    • 10
  • Kaspar Schmid
    • 2
  • Rianda Gerritsen
    • 4
  • Rob Aitken
    • 2
  • Celina Vaquero
    • 6
  • Vasileios Gkanis
    • 7
  • Christos Housiadas
    • 7
  • Jesús María López de Ipiña
    • 6
  • Michael Riediker
    • 1
  1. 1.Institute for Work and Health (IST)LausanneSwitzerland
  2. 2.Institute of Occupational Medicine (IOM)EdinburghScotland, UK
  3. 3.Institute for Health and Consumer Protection (IHCP), Joint Research Centre (JRC)IspraItaly
  4. 4.TNOZeistThe Netherlands
  5. 5.EMPA–Swiss Federal Laboratories for Materials Science and TechnologySt. GallenSwitzerland
  6. 6.TECNALIA Research and InnovationMinanoSpain
  7. 7.National Center for Scientific Research “Demokritos”AthensGreece
  8. 8.LKCFullinsdorfSwitzerland
  9. 9.COWIKongens LyngbyDenmark
  10. 10.Veneto NanoTech S.C.p.APadovaItaly

Personalised recommendations