Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

  • Lijin Xia
  • Sijia Yi
  • Scott C. Lenaghan
  • Mingjun ZhangEmail author
Research Paper


In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.


Gold nanoparticle Organosilicone surfactant Silwet L-77 Biomedical application 



The authors appreciate discussions on the ATR-IR experiments with Mr. Ryan Hammonds and Mr. Kaan Serpersu, and Dr. John Dunlap for his great assistance with the SEM analysis. The authors would also like to thank Mr. Spencer P. Cochrane for his help in processing the samples for DLS analysis. This research is partially sponsored by the Army Research Office (W911NF-10-1-0114) and the National Science Foundation (CMMI: 1029953, CBET: 0965877). The authors are grateful for the support.


  1. Alexandridis P (2011) Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem Eng Technol 34(1):15–28CrossRefGoogle Scholar
  2. Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc Chem Commun 16:1655–1656CrossRefGoogle Scholar
  3. Caruso RA, Ashokkumar M, Grieser F (2002) Sonochemical formation of gold sols. Langmuir 18(21):7831–7836CrossRefGoogle Scholar
  4. Dahl JA, Maddux BLS, Hutchison JE (2007) Toward greener nanosynthesis. Chem Rev 107(6):2228–2269CrossRefGoogle Scholar
  5. Debouttière PJ, Roux S, Vocanson F, Billotey C, Beuf O, Favre-Réguillon A, Lin Y, Pellet-Rostaing S, Lamartine R, Perriat P, Tillement O (2006) Design of gold nanoparticles for magnetic resonance imaging. Adv Funct Mater 16(18):2330–2339CrossRefGoogle Scholar
  6. El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H (2008) Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Eur Phys J Special Top 153(1):361–364CrossRefGoogle Scholar
  7. Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241(105):20–22Google Scholar
  8. Hutter E, Boridy S, Labrecque S, Lalancette-HéBert M, Kriz J, Winnik FM, Maysinger D (2010) Microglial response to gold nanoparticles. ACS Nano 4(5):2595–2606Google Scholar
  9. Jansen LL (1973) Enhancement of herbicides by silicone surfactants. Weed Sci 21(2):130–135Google Scholar
  10. Jouikov VV (1997) Electrochemical reactions of organosilicon compounds. Russ Chem Rev 66(6):509–540Google Scholar
  11. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707CrossRefGoogle Scholar
  12. Larson TA, Bankson J, Aaron J, Sokolov K (2007) Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18(32):325101CrossRefGoogle Scholar
  13. Launer PJ (1987) Infrared analysis of organosilicon compounds: spectra-structure correlations. In: Arkles B et al (eds) Silicon compounds: register and review. Petrarch Systems, Bristol, pp 100–103Google Scholar
  14. Liu M, Guyot-Sionnest P (2005) Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J Phys Chem B 109(47):22192–22200CrossRefGoogle Scholar
  15. Liu Y, Shipton MK, Ryan J, Kaufman ED, Franzen S, Feldheim DL (2007) Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide–poly(ethylene glycol) monolayers. Anal Chem 79(6):2221–2229CrossRefGoogle Scholar
  16. Lukevics E, Ignatovich L (2005) 14Si biological activity of organosilicon compounds. In: Gielen M, Tiekink ERT (eds) Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. Wiley, West Sussex, pp 83–107Google Scholar
  17. Mandal M, Ghosh SK, Kundu S, Esumi K, Pal T (2002) UV photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles. Langmuir 18(21):7792–7797CrossRefGoogle Scholar
  18. Niidome T, Shiotani A, Katayama Y, Niidome Y (2007) Spherical and anisotropic gold nanomaterials in medical therapy. In: Kumar CSSR (ed) Metallic nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 277–402 Google Scholar
  19. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962CrossRefGoogle Scholar
  20. Owens III DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102Google Scholar
  21. Podsiadlo P, Sinani VA, Bahng JH, Kam NWS, Lee J, Kotov NA (2007) Gold nanoparticles enhance the anti-leukemia action of a 6-mercaptopurine chemotherapeutic agent. Langmuir 24(2):568–574CrossRefGoogle Scholar
  22. Qi Z-M, Zhou H-S, Matsuda N, Honma I, Shimada K, Takatsu A, Kato K (2004) Characterization of gold nanoparticles synthesized using sucrose by seeding formation in the solid phase and seeding growth in aqueous solution. J Phys Chem B 108(22):7006–7011CrossRefGoogle Scholar
  23. Sakai T, Alexandridis P (2004) Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature. Langmuir 20(20):8426–8430CrossRefGoogle Scholar
  24. Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126(28):8648–8649CrossRefGoogle Scholar
  25. Seo D, Yoo CI, Park JC, Park SM, Ryu S, Song H (2008) Directed surface overgrowth and morphology control of polyhedral gold nanocrystals. Angew Chem Int Ed 47(4):763–767CrossRefGoogle Scholar
  26. Shenoy D, Fu W, Li J, Crasto C, Jones G, Dimarzio C, Sridhar S, Amiji M (2006) Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int J Nanomed 1(1):51–57CrossRefGoogle Scholar
  27. Sun X, Jiang X, Dong S, Wang E (2003) One-step synthesis and size control of dendrimer-protected gold nanoparticles: a heat-treatment-based strategy. Macromol Rapid Commun 24(17):1024–1028CrossRefGoogle Scholar
  28. Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, Gao C (2006) Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. Biomacromolecules 7(4):1203–1209CrossRefGoogle Scholar
  29. Wang S-H, Lee C-W, Chiou A, Wei P-K (2010) Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol 8(1):33CrossRefGoogle Scholar
  30. Xiao J, Qi L (2011) Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3(4):1383–1396CrossRefGoogle Scholar
  31. Xiong Y, Xia Y (2007) Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv Mater (Weinheim, Ger) 19(20):3385–3391CrossRefGoogle Scholar
  32. Yu YY, Chang S-S, Lee C-L, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101(34):6661–6664CrossRefGoogle Scholar
  33. Zhou M, Wang B, Rozynek Z, Xie Z, Fossum JO, Yu X, Raaen S (2009) Minute synthesis of extremely stable gold nanoparticles. Nanotechnology 20(50):505606CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lijin Xia
    • 1
  • Sijia Yi
    • 1
  • Scott C. Lenaghan
    • 1
  • Mingjun Zhang
    • 1
    Email author
  1. 1.Department of Mechanical, Aerospace and Biomedical EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations