Ionic transport in nanocapillary membrane systems

  • Vikhram V. Swaminathan
  • Larry R. GibsonII
  • Marie Pinti
  • Shaurya Prakash
  • Paul W. Bohn
  • Mark A. Shannon
Review
Part of the following topical collections:
  1. Nanotechnology for Sustainable Development

Abstract

Species transport in nanocapillary membrane systems has engaged considerable research interest, presenting technological challenges and opportunities, while exhibiting significant deviations from conventionally well understood bulk behavior in microfluidics. Nonlinear electrokinetic effects and surface charge of materials, along with geometric considerations, dominate the phenomena in structures with characteristic lengths below 100 nm. Consequently, these methods have enabled 3D micro- and nanofluidic hybrid systems with high-chemical selectivity for precise manipulation of mass-limited quantities of analytes. In this review, we present an overview of both fundamental developments and applications of these unique nanocapillary systems, identifying forces that govern ion and particle transport, and surveying applications in separation, sensing, mixing, and chemical reactions. All of these developments are oriented toward adding important functionality in micro-total analysis systems.

Keywords

Membranes Nanostructures Nanofluidics Microfluidics Ion transport Electrokinetics μ-TAS Nanopore Nanocapillary Water filtration Sustainable development 

References

  1. Adiga SP, Jin CM, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. WIREs Nanomed Nanobiotechnol 1:568–581CrossRefGoogle Scholar
  2. Agerbaek M, Keiding K (1995) Streaming potential during cake filtration of slightly compressible particles. J Colloid Interface Sci 169:255–342CrossRefGoogle Scholar
  3. Ali M, Tahir MN, Siwy ZS, Neumann R, Tremel W, Ensinger W (2011) Hydrogen peroxide sensing with horseradish peroxidase-modified polymer single conical nanochannels. Anal Chem 83:1673–1680CrossRefGoogle Scholar
  4. Bohn PW (2009) Nanoscale control and manipulation of molecular transport in chemical analysis. Annu Rev Anal Chem 2:279–296CrossRefGoogle Scholar
  5. Boukany PE, Morss A, Liao W, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y, Li L, Gao K, Hu X, Zhao X, Hemminger O, Lu W, Lafyatis GP, Lee LJ (2011) Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol 6:747–754CrossRefGoogle Scholar
  6. Bowski L, Saini R, Ryu D, Vieth W (1971) Kinetic modeling of hydrolysis of sucrose by invertase. Biotechnol Bioeng 13:641–656CrossRefGoogle Scholar
  7. Burgmayer P, Murray RW (1982) An ion gate membrane: electrochemical control of ion permeability through a membrane with an embedded electrode. J Am Chem Soc 4:6139–6140CrossRefGoogle Scholar
  8. Burgreen D, Nakache F (1964) Electrokinetic flow in ultrafine capillary slits. J Phys Chem 68:1084–1091CrossRefGoogle Scholar
  9. Buyukserin F, Kohli P, Wirtz M, Martin C (2007) Electroactive nanotube membranes and redox-gating. Small 3:266–270CrossRefGoogle Scholar
  10. Cannon DM Jr, Kuo T-C, Bohn PW, Sweedler JV (2003) Nanocapillary array interconnects for gated analyte injections and electrophoretic separations in multilayer microfluidic architectures. Anal Chem 75:2224–2230CrossRefGoogle Scholar
  11. Cervera J, Patricio R, Manzanares JA, Mafe S (2010) Incorporating ionic size in the transport equations for charged nanopores. Microfluid Nanofluid 9:41–53CrossRefGoogle Scholar
  12. Chang I-H, Tulock JJ, Liu J, Cannon DM Jr, Bohn PW, Sweedler JV, Cropeck DM (2005) Miniaturized lead sensor based on lead-specific DNAzyme in a nanocapillary interconnected microfluidic device. Environ Sci Technol 39:3756–3761CrossRefGoogle Scholar
  13. Chatterjee AN, Cannon DM Jr, Gatimu EN, Sweedler JV, Aluru NR, Bohn PW (2005) Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. J Nanopart Res 7:507–516CrossRefGoogle Scholar
  14. Chowdiah P, Wasan D, Gidaspow D (1983) On the interpretation of streaming potential data in nonaqueous media. Colloids Surf 7:291–299CrossRefGoogle Scholar
  15. Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18:4653–4658CrossRefGoogle Scholar
  16. Chun K-Y, Mafe S, Ramirez P, Stroeve P (2006) Protein transport through gold-coated, charged nanopores: Effects of applied voltage. Chem Phys Lett 418:561–564CrossRefGoogle Scholar
  17. Conlisk AT (2005) The Debye-Huckel approximation: Its use in describing electroosmotic flow in micro- and nanochannels. Eletrophoresis 26:1896–1912CrossRefGoogle Scholar
  18. Conlisk AT (2012) Essentials of micro- and nanofluidics: with applications to the biological and chemical sciences. Cambridge University Press, CambridgeGoogle Scholar
  19. Conlisk AT, McFerran J, Zheng Z, Hansford D (2002) Mass transfer and flow in electrically charged micro- and nano-channels. Anal Chem 74:2139–2150CrossRefGoogle Scholar
  20. Conlisk AT, Kumar A, Rampersaud A (2007) Ionic and biomolecular transport in nanochannels. Nanoscale Microscale Thermophys Eng 11:177–199CrossRefGoogle Scholar
  21. Contento NM, Branagan SP, Bohn PW (2011) Electrolysis in nanochannels for in situ reagent generation in confined geometries. Lab Chip 11:3634–3641CrossRefGoogle Scholar
  22. Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280CrossRefGoogle Scholar
  23. Datta S, Conlisk AT, Kanani DM, Zydney AL, Fissell WH, Roy S (2010) Characterizing the surface charge of synthetic nanomembranes by the streaming potential method. J Colloid Interface Sci 348:85–95CrossRefGoogle Scholar
  24. Dhathathreyan A (2011) Real-time monitoring of invertase activity immobilized in nanoporous aluminum oxide. J Phys Chem B 115:6678–6682CrossRefGoogle Scholar
  25. Fa K, Tulock JJ, Sweedler JV, Bohn PW (2005) Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels. J Am Chem Soc 127:13928–13933CrossRefGoogle Scholar
  26. Fievet P, Szymczyk A, Aoubiza B, Pagetti J (2000) Evaluation of three methods for the characterisation of the membrane-solution interface: streaming potential, membrane potential and electrolyte conductivity inside pores. J Membr Sci 168:87–100CrossRefGoogle Scholar
  27. Flachsbart BR, Wong K, Iannacone JM, Abante EN, Vlach RI, Rauchfuss PA, Bohn PW, Sweedler JV, Shannon MA (2006) Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing. Lab Chip 6:667–674CrossRefGoogle Scholar
  28. Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008a) Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes. Electrophoresis 29:1237–1244CrossRefGoogle Scholar
  29. Gong M, Kim BY, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2008b) An on-chip fluorogenic enzyme assay using a multilayer microchip interconnected with a nanocapillary array membrane. IEEE Sens J 8:601–607CrossRefGoogle Scholar
  30. Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8:23–33CrossRefGoogle Scholar
  31. He Y, Gillespie D, Boda D, Vlassiouk I, Eisenberg RS, Siwy ZS (2009) Tuning transport properties of nanofluidic devices with local charge inversion. J Am Chem Soc 131:5194–5202CrossRefGoogle Scholar
  32. Huang S, Yin Y (2006) Transport and separation of small organic molecules through nanotubules. Anal Sci 22:1005–1009CrossRefGoogle Scholar
  33. Huisman IH, Pradanos P, Calvo JI, Hernandez A (2000) Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes. J Membr Sci 178:79–92CrossRefGoogle Scholar
  34. Hulteen JC, Jirage KB, Martin CR (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J Am Chem Soc 120:6603–6604CrossRefGoogle Scholar
  35. Jagerszki G, Gyurcsanyi R, Hofler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid-functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis. Nano Lett 7:1609–1612CrossRefGoogle Scholar
  36. Jirage KB, Hulteen JC, Martin CR (1999) Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal Chem 71:4913–4918CrossRefGoogle Scholar
  37. Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948CrossRefGoogle Scholar
  38. Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114CrossRefGoogle Scholar
  39. Kemery PJ, Steehler JK, Bohn PW (1998) Electric field mediated transport in nanometer diameter channels. Langmuir 14:2884–2889CrossRefGoogle Scholar
  40. Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71:1815–1819CrossRefGoogle Scholar
  41. Kim BY, Swearingen CB, Ho JA, Romanova EV, Bohn PW, Sweedler JV (2007) Direct immobilization of Fab’ in nanocapillaries for manipulating mass-limited samples. J Am Chem Soc 129:7620–7626CrossRefGoogle Scholar
  42. Kim BY, Yang J, Gong M, Flachsbart BR, Shannon MA, Bohn PW, Sweedler JV (2009) Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device. Anal Chem 81:2715–2722CrossRefGoogle Scholar
  43. Kim S, Ko S, Kang K, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5:297–301CrossRefGoogle Scholar
  44. Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305:984–986CrossRefGoogle Scholar
  45. Ku J-R, Lai S-M, Ileri N, Ramirez P, Mafe S, Stroeve P (2007) pH and ionic strength effects on amino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J Phys Chem C 111:2965–2973CrossRefGoogle Scholar
  46. Kuo T-C, Sloan LA, Sweedler JV, Bohn PW (2001) Manipulating molecular transport through nanoporous membranes by control of electrokinetic flow- effect of surface charge density and Debye length. Langmuir 17:6298–6303CrossRefGoogle Scholar
  47. Kuo T-C, Cannon DM Jr, Chen Y, Tulock JJ, Shannon MA, Sweedler JV, Bohn PW (2003a) Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal Chem 75:1861–1867CrossRefGoogle Scholar
  48. Kuo T-C, Cannon DM Jr, Shannon MA, Bohn PW, Sweedler JV (2003b) Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sens Actuators, A 102:223–233CrossRefGoogle Scholar
  49. Kuo T-C, Kim H-K, Cannon DM Jr, Shannon MA, Sweedler JV, Bohn PW (2004) Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures. Angew Chem 116:1898–1901CrossRefGoogle Scholar
  50. Lee SB, Martin CR (2002) Electromodulated molecular transport in gold-nanotube membranes. J Am Chem Soc 124:11850–11851CrossRefGoogle Scholar
  51. Lokuge I, Wang X, Bohn PW (2007) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir 23:305–311CrossRefGoogle Scholar
  52. Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588CrossRefGoogle Scholar
  53. Martin CR, Nishizawa M, Jirage K, Kang MS, Lee SB (2001a) Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater 13:1351–1362CrossRefGoogle Scholar
  54. Martin CR, Nishizawa M, Jirage K, Kang M (2001b) Investigations of the transport properties of gold nanotubule membranes. J Phys Chem B 105:1925–1934CrossRefGoogle Scholar
  55. Mulero R, Prabhu AS, Freedman KJ, Kim MJ (2010) Nanopore-based devices for bioanalytical applications. JALA 15:243–252Google Scholar
  56. Nam S-W, Rooks MJ, Kim K-B, Rossnagel SM (2009) Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett 9:2044–2048CrossRefGoogle Scholar
  57. Napoli M, Eijkel J, Pennathur S (2010) Nanofluidic technology for biomolecule applications: a critical review. Lab Chip 10:957–985CrossRefGoogle Scholar
  58. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268:700–702CrossRefGoogle Scholar
  59. Nystrom M, Lindstrom M, Matthiasson E (1989) Streaming potential as a tool in the characterization of ultrafiltration membranes. Colloids Surf 36:297–312CrossRefGoogle Scholar
  60. Oukhaled A, Cressiot B, Bacri L, Pastoriza-Gallego M, Betton J-M, Bourhis E, Jede R, Gierak J, Auvray L, Pelta J (2011) Dynamics of completely unfolded and native proteins through solid-state nanopores as a function of electric driving force. ACS Nano 5:3628–3638CrossRefGoogle Scholar
  61. Pardon G, van der Wijngaart W (2011) Electrostatic gating of ion and molecule transport through a nanochannel-array membrane. Proc IEEE Solid-State Sens Actuators Microsyst Conf (Transducers) Beijing, China, pp 1610-1613Google Scholar
  62. Perera DNT, Ito T (2010) Cyclic voltammetry on recessed nanodisk-array electrodes prepared from track-etched polycarbonate membranes with 10-nm diameter pores. Analyst 135:172–176CrossRefGoogle Scholar
  63. Piruska A, Branagan SP, Cropek DM, Sweedler JV, Bohn PW (2008) Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes. Lab Chip 8:1625–1631CrossRefGoogle Scholar
  64. Piruska A, Branagan SP, Minnis AB, Wang Z, Cropeck DM, Sweedler JV, Bohn PW (2010a) Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices. Lab Chip 10:1237–1244CrossRefGoogle Scholar
  65. Piruska A, Gong M, Sweedler JV, Bohn PW (2010b) Nanofluidics in chemical analysis. Chem Soc Rev 39:1060–1072CrossRefGoogle Scholar
  66. Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155CrossRefGoogle Scholar
  67. Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS (2011) Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat Nanotechnol 6:798–802CrossRefGoogle Scholar
  68. Prakash S, Yeom J, Jin N, Adesida I, Shannon MA (2007) Characterization of ionic transport at the nanoscale. Proc ASME IMECE, N: J Nanoeng Nanosyst 220:45–52Google Scholar
  69. Prakash S, Piruska A, Gatimu EN, Bohn PW, Sweedler JV, Shannon MA (2008) Nanofluidics: Systems and Applications. IEEE Sens J 8:441–450CrossRefGoogle Scholar
  70. Prakash S, Karacor M, Benerjee S (2009) Surface modification in microsystems and nanosystems. Surf Sci Rep 64:233–254CrossRefGoogle Scholar
  71. Prakash S, Pinti M, Bellman K (2012a) Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope. J Micromech Microeng in pressGoogle Scholar
  72. Prakash S, Pinti M, Bhushan B (2012b) Theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc London, Ser A 370:2269–2303CrossRefGoogle Scholar
  73. Qiao R, Aluru N (2003) Ion concentration and velocity in nanochannel electroosmotic flows. J Chem Phys 118:4692–4701CrossRefGoogle Scholar
  74. Qiao R, Aluru N (2004) Charge inversion and flow reversal in a nanochannel electroosmotic flow. Phys Rev Lett 92:198301CrossRefGoogle Scholar
  75. Qiao R, Georgiadis J, Aluru N (2006) Differential ion transport induced electroosmosis and internal recirculation in heterogeneous osmosis membranes. Nano Lett 6:995–999CrossRefGoogle Scholar
  76. Renkin E (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38:225–243Google Scholar
  77. Rice C, Whitehead R (1965) Electrokinetic flow in a narrow cylindrical capillary. J Phys Chem 69:4017–4024CrossRefGoogle Scholar
  78. Sadr R, Yoda M, Gnanaprakasam P, Conlisk AT (2006) Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Appl Phys Lett 89:044103CrossRefGoogle Scholar
  79. Schasfoort RB, Schlautmann S, Hendrikse J, van den Berg A (1999) Field-effect flow control for microfabricated fluidic networks. Science 286:942–944CrossRefGoogle Scholar
  80. Schibel AE, Heider EC, Harris JM, White HS (2011) Fluorescence microscopy of the pressure-dependent structure of lipid bilayers suspended across conical nanopores. J Am Chem Soc 133:7810–7815CrossRefGoogle Scholar
  81. Schoch RB, Han J, Renaud P (2008) Transport phenomena in nanofluidics. Rev Mod Phys 80:839–883CrossRefGoogle Scholar
  82. Shannon MA, Flachsbart BR, Iannacone JM, Wong K, Cannon Jr DM, Fa K, Sweedler JV, Bohn PW (2005) Nanofluidic interconnects within a multilayer microfluidic chip for attomolar biochemical analysis and molecular manipulation. Proc 3rd Ann IEEE Int EMBS Special Topic Conf Microtechnol Medicine Biology Kahuhu, pp 257-259Google Scholar
  83. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ (2008) Science and technology for water purification in the coming decades. Nature 452:301–310CrossRefGoogle Scholar
  84. Sparreboom W, van den Berg A, Eijkel J (2009) Principles and applications of nanofluidic transport. Nat Nanotechnol 4:713–720CrossRefGoogle Scholar
  85. Sparreboom W, van den Berg A, Eijkel J (2010) Transport in nanofluidic systems: a review of theory and applications. New J Phys 12:015004CrossRefGoogle Scholar
  86. Szymczyk A, Aoubiza B, Fievet P, Pagetti J (1999) Electrokinetic phenomena in homogeneous cylindrical pores. J Colloid Interface Sci 216:285–296CrossRefGoogle Scholar
  87. Talaga DS, Li J (2009) Single-Molecule Protein Unfolding in Solid State Nanopores. J Am Chem Soc 131:9287–9297CrossRefGoogle Scholar
  88. Tulock JJ, Shannon MA, Bohn PW, Sweedler JV (2004) Microfluidic Separation and Gateable Fraction Collection for Mass-Limited Samples. Anal Chem 76:6419–6425CrossRefGoogle Scholar
  89. Vitarelli M, Prakash S, Talaga D (2011) Determining nanocapillary geometry from electrochemical impedance spectroscopy using a variable topology network circuit model. Anal Chem 83:533–541CrossRefGoogle Scholar
  90. Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7:552–556CrossRefGoogle Scholar
  91. Wang Y-C, Stevens A, Han J (2005) Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem 77:4293–4299CrossRefGoogle Scholar
  92. Wang Z, King TL, Branagan SP, Bohn PW (2009) Enzymatic activity of surface-immobilized horseradish peroxidase confined to micrometer- to nanometer-scale structures in nanocapillary array membranes. Analyst 134:851–859CrossRefGoogle Scholar
  93. Wernette DP, Swearingen CB, Cropek DM, Lu Y, Sweedler JV, Bohn PW (2006) Incorporation of a DNAzyme into Au-coated nanocapillary array membranes with an internal standard for Pb(II) sensing. Analyst 131:41–47CrossRefGoogle Scholar
  94. Yan R, Liang W, Fan R, Yang P (2009) Nanofluidic diodes based on nanotube heterojunctions. Nano Lett 9:3820–3825CrossRefGoogle Scholar
  95. Zhang Y, Timperman AT (2003) Integration of nanocapillary arrays into microfluidic devices for use as analyte concentrators. Analyst 128:537–542CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Vikhram V. Swaminathan
    • 1
  • Larry R. GibsonII
    • 3
  • Marie Pinti
    • 5
  • Shaurya Prakash
    • 5
  • Paul W. Bohn
    • 3
    • 4
  • Mark A. Shannon
    • 1
    • 2
  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameUSA
  4. 4.Department of Chemistry and BiochemistryUniversity of Notre DameNotre DameUSA
  5. 5.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations