Scalable synthesis of palladium nanoparticle catalysts by atomic layer deposition

  • Xinhua Liang
  • Lauren B. Lyon
  • Ying-Bing Jiang
  • Alan W. WeimerEmail author
Research Paper


Atomic layer deposition (ALD) was used to produce Pd/Al2O3 catalysts using sequential exposures of Pd(II) hexafluoroacetylacetonate and formalin at 200 °C in a fluidized bed reactor. The ALD-prepared Pd/alumina catalysts were characterized by various methods including hydrogen chemisorption, XPS, and TEM, and compared with a commercially available 1 wt% Pd/alumina catalyst, which was also characterized. The content of Pd on alumina support and the size of Pd nanoparticles can be controlled by the number of ALD-coating cycles and the dose time of the Pd precursor. One layer of organic component from the Pd precursor remained on the Pd particle surface. The ALD 0.9 wt% Pd/alumina had greater active metal surface area and percent metal dispersion than the commercial 1 wt% Pd/alumina catalyst. The ALD and commercial catalysts were subjected to catalytic testing to determine their relative activities for glucose oxidation to gluconic acid in aqueous solution. The ALD 0.9 wt% Pd/alumina catalyst had comparable activity as compared to the commercial 1 wt% Pd catalyst. No noticeable amount of Pd leaching was observed for the ALD-prepared catalysts during the vigorously stirred reaction.


Palladium (Pd) Nanoparticle (NP) Atomic layer deposition (ALD) Fluidized bed reactor Glucose oxidation 



The authors thank Andrew S. Cavanagh for the XPS analysis, Fred Luiszer for providing the ICP-MS analysis, as well as Brittany J. Michael for the assistance with part of the glucose oxidation tests. The authors also thank Prof. J. Will Medlin for helpful discussions.


  1. Aaltonen T, Ritala M, Sajavaara T, Keinonen J, Leskela M (2003) Atomic layer deposition of platinum thin films. Chem Mater 15:1924–1928CrossRefGoogle Scholar
  2. Aaltonen T, Ritala M, Tung YL, Chi Y, Arstila K, Meinander K, Leskela M (2004) Atomic layer deposition of noble metals: exploration of the low limit of the deposition temperature. J Mater Res 19:3353–3358CrossRefGoogle Scholar
  3. Chou P, Vannice MA (1987) Calorimetric heat of adsorption measurements on palladium. 3. Influence of crystallite size and support on O2 adsorption. J Catal 105:342–351CrossRefGoogle Scholar
  4. Elam JW, Zinovev A, Han CY, Wang HH, Welp U, Hryn JN, Pellin MJ (2006) Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films 515:1664–1673CrossRefGoogle Scholar
  5. Elliott SD (2010) Mechanism, products, and growth rate of atomic layer deposition of noble metals. Langmuir 26:9179–9182CrossRefGoogle Scholar
  6. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131CrossRefGoogle Scholar
  7. Gogova Z, Hanika J (2009) Dynamic modelling of glucose oxidation with palladium catalyst deactivation in multifunctional CSTR: benefits of periodic operation. Chem Eng J 150:223–230CrossRefGoogle Scholar
  8. Goldstein DN, George SM (2009) Enhancing the nucleation of palladium atomic layer deposition on Al2O3 using trimethylaluminum to prevent surface poisoning by reaction products. Appl Phys Lett 95:143106CrossRefGoogle Scholar
  9. Johansson A, Lu J, Carlsson JO, Boman M (2004) Deposition of palladium nanoparticles on the pore walls of anodic alumina using sequential electroless deposition. J Appl Phys 96:5189–5194CrossRefGoogle Scholar
  10. Kessels WMM, Knoops HCM, Dielissen SAF, Mackus AJM, van de Sanden MCM (2009) Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy. Appl Phys Lett 95:013114CrossRefGoogle Scholar
  11. Kim SW, Park J, Jang Y, Chung Y, Hwang S, Hyeon T, Kim YW (2003) Synthesis of monodisperse palladium nanoparticles. Nano Lett 3:1289–1291CrossRefGoogle Scholar
  12. Kim Y, Ten Eyck GA, Ye DX, Jezewski C, Karabacak T, Shin HS, Senkevich JJ, Lu TM (2005) Atomic layer deposition of Pd on TaN for Cu electroless plating. J Electrochem Soc 152:C376–C381CrossRefGoogle Scholar
  13. King JS, Wittstock A, Biener J, Kucheyev SO, Wang YM, Baumann TF, Giri SK, Hamza AV, Baeumer M, Bent SF (2008a) Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. Nano Lett 8:2405–2409CrossRefGoogle Scholar
  14. King DM, Liang XH, Carney CS, Hakim LF, Li P, Weimer AW (2008b) Atomic layer deposition of UV-absorbing ZnO films on SiO2 and TiO2 nanoparticles using a fluidized bed reactor. Adv Funct Mater 18:607–615CrossRefGoogle Scholar
  15. Klein J, Rosenberg M, Markos J, Dolgos O, Kroslak M, Kristofikova L (2002) Biotransformation of glucose to gluconic acid by Aspergillus niger—study of mass transfer in an airlift bioreactor. Biochem Eng J 10:197–205CrossRefGoogle Scholar
  16. Korovchenko P, Renken A, Kiwi-Minsker L (2005) Microwave plasma assisted preparation of Pd-nanoparticles with controlled dispersion on woven activated carbon fibres. Catal Today 102:133–141CrossRefGoogle Scholar
  17. Li JH, Liang XH, King DM, Jiang YB, Weimer AW (2010) Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition. Appl Catal B 97:220–226CrossRefGoogle Scholar
  18. Liang XH, Hakim LF, Zhan GD, McCormick JA, George SM, Weimer AW, Spencer JA, Buechler KJ, Blackson J, Wood CJ, Dorgan JR (2007) Novel processing to produce polymer/ceramic nanocomposites by atomic layer deposition. J Am Ceram Soc 90:57–63CrossRefGoogle Scholar
  19. Liang X, Liu CJ, Kuai P (2008a) Selective oxidation of glucose to gluconic acid over argon plasma reduced Pd/Al2O3. Green Chem 10:1318–1322CrossRefGoogle Scholar
  20. Liang XH, Zhan GD, King DM, McCormick JA, Zhang J, George SM, Weimer AW (2008b) Alumina atomic layer deposition nanocoatings on primary diamond particles using a fluidized bed reactor. Diam Relat Mater 17:185–189CrossRefGoogle Scholar
  21. Liang XH, King DM, Li P, George SM, Weimer AW (2009) Nanocoating hybrid polymer films on large quantities of cohesive nanoparticles by molecular layer deposition. AIChE J 55:1030–1039CrossRefGoogle Scholar
  22. Liang XH, Barrett KS, Jiang YB, Weimer AW (2010) Rapid silica atomic layer deposition on large quantities of cohesive nanoparticles. ACS Appl Mater Interfaces 2:2248–2253CrossRefGoogle Scholar
  23. Liang XH, Zhou Y, Li JH, Weimer AW (2011) Reaction mechanism studies for platinum nanoparticle growth by atomic layer deposition. J Nanopart Res 13:3781–3788CrossRefGoogle Scholar
  24. Liu HU, Cui ZF (2007) Optimization of operating conditions for glucose oxidation in an enzymatic membrane bioreactor. J Membr Sci 302:180–187CrossRefGoogle Scholar
  25. Lu JL, Stair PC (2010a) Nano/subnanometer Pd nanoparticles on oxide supports synthesized by AB-type and low-temperature ABC-type atomic layer deposition: growth and morphology. Langmuir 26:16486–16495CrossRefGoogle Scholar
  26. Lu JL, Stair PC (2010b) Low-temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. Angew Chem Int Edn 49:2547–2551CrossRefGoogle Scholar
  27. Marshall ST, O’Brien M, Oetter B, Corpuz A, Richards RM, Schwartz DK, Medlin JW (2010) Controlled selectivity for palladium catalysts using self-assembled monolayers. Nat Mater 9:853–858CrossRefGoogle Scholar
  28. Mirescu A, Prusse U (2007) A new environmental friendly method for the preparation of sugar acids via catalytic oxidation on gold catalysts. Appl Catal B 70:644–652CrossRefGoogle Scholar
  29. Nikov I, Paev K (1995) Palladium on alumina catalyst for glucose-oxidation - reaction-kinetics and catalyst deactivation. Catal Today 24:41–47CrossRefGoogle Scholar
  30. Piao YZ, Jang YJ, Shokouhimehr M, Lee IS, Hyeon T (2007) Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes. Small 3:255–260CrossRefGoogle Scholar
  31. Senkevich JJ, Yang GR, Lu TM, Cale TS, Jezewski C, Lanford WA (2002) Phosphorus atomic layers promoting the chemisorption of highly polarizable transition metallorganics. Chem Vap Depos 8:189–192CrossRefGoogle Scholar
  32. Senkevich JJ, Tang F, Rogers D, Drotar JT, Jezewski C, Lanford WA, Wang GC, Lu TM (2003) Substrate-independent palladium atomic layer deposition. Chem Vap Depos 9:258–264CrossRefGoogle Scholar
  33. Setthapun W, Williams WD, Kim SM, Feng H, Elam JW, Rabuffetti FA, Poeppelmeier KR, Stair PC, Stach EA, Ribeiro FH, Miller JT, Marshall CL (2010) Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in situ XAFS analysis and water-gas shift reaction. J Phys Chem C 114:9758–9771CrossRefGoogle Scholar
  34. Suntola T (1992) Atomic layer epitaxy. Thin Solid Films 216:84–89CrossRefGoogle Scholar
  35. Ten Eyck GA, Senkevich JJ, Tang F, Liu DL, Pimanpang S, Karaback T, Wang GC, Lu TM, Jezewski C, Lanford WA (2005) Plasma-assisted atomic layer deposition of palladium. Chem Vap Depos 11:60–66CrossRefGoogle Scholar
  36. Ten Eyck GA, Pimanpang S, Bakhru H, Lu TM, Wang GC (2006) Atomic layer deposition of Pd on an oxidized metal substrate. Chem Vap Depos 12:290–294CrossRefGoogle Scholar
  37. Yang X, Li QB, Wang HX, Huang JL, Lin LQ, Wang WT, Sun DH, Su YB, Opiyo JB, Hong LW, Wang YP, He N, Jia LS (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12:1589–1598CrossRefGoogle Scholar
  38. Zhou Y, King DM, Liang XH, Li JH, Weimer AW (2010) Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition. Appl Catal B 101:54–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Xinhua Liang
    • 1
    • 3
  • Lauren B. Lyon
    • 1
  • Ying-Bing Jiang
    • 2
  • Alan W. Weimer
    • 1
    Email author
  1. 1.Department of Chemical and Biological EngineeringUniversity of ColoradoBoulderUSA
  2. 2.TEM LaboratoryUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Chemical and Biological EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations