Structure and electrical transport in films of Ge nanoparticles embedded in SiO2 matrix

  • Ionel Stavarache
  • Ana-Maria Lepadatu
  • Adrian V. Maraloiu
  • Valentin S. Teodorescu
  • Magdalena Lidia Ciurea
Research Paper


The films containing Ge nanoparticles embedded in SiO2 matrix were prepared by RF magnetron sputtering and subsequently by thermal annealing. Their structure was investigated by conventional transmission electron microscopy and high resolution transmission electron microscopy together with energy-dispersive X-ray spectroscopy. The electrical behavior of films was studied by measuring current–temperature and current–voltage characteristics. The structure investigation reveals two kinds of features: a low density of big Ge nanoparticles with sizes from 20 to 50 nm and a network of small amorphous Ge nanoregions/nanoparticles (5 nm size or less) with high density, both being embedded in amorphous SiO2 matrix. The electrical transport was shown to take place through the network of amorphous Ge nanoregions. At low temperature, the T −1/4 dependence of the current was evidenced, while at high temperature, the T −1 Arrhenius dependence was found. At both low and high temperatures, the conductivity is nearly constant. The behavior at low temperature was explained by the hopping mechanism on localized states located in a band near the Fermi energy, while at high temperature by the charge excitation to the extended states.


Nanoparticles Magnetron sputtering TEM Electron irradiation Conduction mechanisms Nanostructures 



This work was supported from Project No. 471/2009 (ID 918/2008), Ideas Program, National Research, Development and Innovation Plan 2007–2013.


  1. Ahmed AHZ, Tait RN (2003) Characterization of amorphous GexSi1−xOy for micro machined uncooled bolometer applications. J Appl Phys 94:5326–5332. doi: 10.1063/1.1609633 CrossRefGoogle Scholar
  2. Aktağ A, Yilmaz E, Mogaddam NAP, Aygün G, Cantas A, Turan R (2010) Ge nanocrystals embedded in SiO2 in MOS based radiation sensors. Nucl Instr Methods Phys Res B 268:3417–3420. doi: 10.1016/j.nimb.2010.09.007 CrossRefGoogle Scholar
  3. Basa P, Alagoz AS, Lohner T, Kulakci M, Turan R, Nagy K, Horváth ZsJ (2008) Electrical and ellipsometry study of sputtered SiO2 structures with embedded Ge nanocrystals. Appl Surf Sci 254:3626–3629. doi: 10.1016/j.apsusc.2007.10.075 CrossRefGoogle Scholar
  4. Beyer V, von Borany J, Klimenkov M (2007) A transient electrical model of charging for Ge nanocrystal containing gate oxides. J Appl Phys 101:094507. doi: 10.1063/1.2723864 CrossRefGoogle Scholar
  5. Chen WR, Chang TC, Liu PT, Tu CH, Yeh JL, Hsieh YT, Wang RY, Chang CY (2007) Formation of germanium nanocrystals by rapid thermal oxidizing SiGeO layer for nonvolatile memory application. Surf Coat Tech 202:1333–1337. doi: 10.1016/j.surfcoat.2007.07.112 CrossRefGoogle Scholar
  6. Chew HG, Choi WK, Foo YL, Zheng F, Chim WK, Voon ZJ, Seow KC, Fitzgerald EA, Lai DMY (2006) Effect of germanium concentration and oxide diffusion barrier on the formation and distribution of germanium nanocrystals in silicon oxide matrix. Nanotechnology 17:1964–1968. doi: 10.1088/0957-4484/17/8/028 CrossRefGoogle Scholar
  7. Chew HG, Zheng F, Choi WK, Chim WK, Foo YL, Fitzgerald EA (2007) Influence of reductant and germanium concentration on the growth and stress development of germanium nanocrystals in silicon oxide matrix. Nanotechnology 18:065302. doi: 10.1088/0957-4484/18/6/065302 CrossRefGoogle Scholar
  8. Choi WK, Ng V, Ng SP, Thio HH, Shen ZX, Li WS (1999) Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing. J Appl Phys 86:1398–1403. doi: 10.1063/1.370901 CrossRefGoogle Scholar
  9. Choi WK, Ho YW, Ng SP, Ng V (2001) Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films. J Appl Phys 89:2168–2172. doi: 10.1063/1.1342026 CrossRefGoogle Scholar
  10. Choi WK, Chew HG, Hob V, Ng V, Chim WK, Ho YW, Ng SP (2006a) Formation of germanium nanocrystals in thick silicon oxide matrix on silicon substrate under rapid thermal annealing. J Cryst Growth 288:79–83. doi: 10.1016/j.jcrysgro.2005.12.033 CrossRefGoogle Scholar
  11. Choi WK, Chew HG, Zheng F, Chim WK, Foo YL, Fitzgerald EA (2006b) Stress development of germanium nanocrystals in silicon oxide matrix. Appl Phys Lett 89:113126. doi: 10.1063/1.2354012 CrossRefGoogle Scholar
  12. Ciurea ML, Lazanu S, Stavarache I, Lepadatu AM, Iancu V, Mitroi MR, Nigmatullin RR, Baleanu CM (2011) Stress-induced traps in multilayered structures. J Appl Phys 109:013717. doi: 10.1063/1.3525582 CrossRefGoogle Scholar
  13. Coppari F, Chervin JC, Congeduti A, Lazzeri M, Polian A, Principi E, Di Cicco A (2009) Pressure-induced phase transitions in amorphous and metastable crystalline germanium by Raman scattering X-ray spectroscopy, and ab initio calculations. Phys Rev B 80:115213. doi: 10.1103/PhysRevB.80.115213 CrossRefGoogle Scholar
  14. Cosentino S, Liu P, Le ST, Lee S, Paine D, Zaslavsky A, Pacifici D, Mirabella S, Miritello M, Crupi I, Terrasi A (2011a) High-efficiency silicon-compatible photo detectors based on Ge quantum dots. Appl Phys Lett 9:221107. doi: 10.1063/1.3597360 CrossRefGoogle Scholar
  15. Cosentino S, Mirabella S, Miritello M, Nicotra G, Lo Savio R (2011b) The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica. Nanoscale Res Lett 6:135. doi: 10.1186/1556-276X-6-135 Google Scholar
  16. Elliott PJ, Yoffe AD, Davis EA (1974) Hopping conduction in amorphous germanium. AIP Conf Proc 20:311–319. doi: 10.1063/1.2945979 Google Scholar
  17. Fujii M, Inoue Y, Shinji H, Yamamoto K (1996) Hopping conduction in SiO2 films containing C, Si, and Ge clusters. Appl Phys Lett 68:3749–3751. doi: 10.1063/1.115994 CrossRefGoogle Scholar
  18. Fujii M, Mamezaki O, Hayashi S, Yamamoto K (1998) Current transport properties of SiO2 films containing Ge nanocrystals. J Appl Phys 83:1507–1512. doi: 10.1063/1.366858 CrossRefGoogle Scholar
  19. Gao F, Green MA, Conibeer G, Cho EC, Huang Y, Pere-Wurfl I, Flynn C (2008) Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing. Nanotechnology 19:455611. doi: 10.1088/0957-4484/19/45/455611 CrossRefGoogle Scholar
  20. Godet C (2001) Hopping model for charge transport in amorphous carbon. Philos Mag B 81:205–222. doi: 10.1080/13642810108216536 CrossRefGoogle Scholar
  21. Iancu V, Draghici M, Jdira L, Ciurea ML (2004) Conduction mechanisms in silicon-based nano composites. J Optoelectron Adv Mater 6:53–56Google Scholar
  22. Inoue Y, Fujii M, Hayashi S, Yamamoto K (1998) Single electron tunneling through Ge nanocrystal fabricated by cosputtering method. Solid-State Electron 42:1605–1608. doi: 10.1016/S0038-1101(98)00079-3 CrossRefGoogle Scholar
  23. Jensen JS, Leervad Pedersen TP, Pereira R, Chevallier J, Lundsgaard Hansen J, Bech Nielsen B, Nylandsted Larsen A (2006) Ge nanocrystals in magnetron sputtered SiO2. Appl Phys A 83:41–48. doi: 10.1007/s00339-005-3479-7 CrossRefGoogle Scholar
  24. Jie Y, Wee ATS, Huan CHA, Shen ZX, Choi WK (2011) Phonon confinement in Ge nanocrystals in silicon oxide matrix. J Appl Phys 109:033107. doi: 10.1063/1.3503444 CrossRefGoogle Scholar
  25. Kolobov AV, Wei SQ, Yan WS, Oyanagi H, Maeda Y, Tanaka K (2003) Formation of Ge nanocrystals embedded in a SiO2 matrix: transmission electron microscopy, X-ray absorption, and optical studies. Phys Rev B 67:195314. doi: 10.1103/PhysRevB.67.195314 CrossRefGoogle Scholar
  26. Lepadatu AM, Stavarache I, Stoica TF, Ciurea ML (2011) Study of Ge nanoparticles embedded in an amorphous SiO2 matrix with photoconductive properties. Dig J Nanomater Bios 6:67–73Google Scholar
  27. Li J, Wu XL, Hu DS, Yang YM, Qiu T, Shen JC (2004) Splitting of X-ray diffraction peak in (Ge:SiO2)/SiO2 multi layers. Solid State Commun 131:21–25. doi: 10.1016/j.ssc.2004.04.026 CrossRefGoogle Scholar
  28. Lomas RA, Hampshire MJ, Tomlinson RD, Knott KF (1973) Hall effects and noise measurement in epitaxial, polycrystalline, and amorphous Ge. Phys Stat Sol (a) 16:385–394. doi: 10.1002/pssa.2210160206 CrossRefGoogle Scholar
  29. Maeda Y (1995) Visible photoluminescence from nano crystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys Rev B 51:1658–1670. doi: 10.1103/PhysRevB.51.1658 CrossRefGoogle Scholar
  30. Mott NF (1969) Conduction in non-crystalline materials. III. Localized states in pseudogap and near extremities of conduction and valence bands. Philos Mag 19:835–852. doi: 10.1080/14786436908216338 Google Scholar
  31. Peibst R, Erenburg M, Bugiel E, Hofmann KR (2010) Effects influencing electron and hole retention times in Ge nanocrystal memory structures operating in the direct tunneling regime. J Appl Phys 108:054316. doi: 10.1063/1.3467527 CrossRefGoogle Scholar
  32. Pinto SRC, Rolo AG, Buljan M, Chahboun A, Bernstorff S, Barradas NP, Alves E, Kashtiban RJ, Bangert U, Gomes MJM (2011) Low-temperature fabrication of layered self-organized Ge clusters by RF-sputtering. Nanoscale Res Lett 6:341. doi: 10.1186/1556-276X-6-341 CrossRefGoogle Scholar
  33. Pollak M, Knotek ML, Kurtzman H, Glick H (1973) DC conductivity of amorphous germanium and the structure of the pseudogap. Phys Rev Lett 30:856–859. doi: 10.1103/PhysRevLett.30.856 CrossRefGoogle Scholar
  34. Ray SK, Das K (2005) Luminescence characteristics of Ge nanocrystals embedded in SiO2 matrix. Opt Mater 27:948–952. doi: 10.1016/j.optmat.2004.08.041 CrossRefGoogle Scholar
  35. Shen JK, Wu XL, Tan C, Yuan RK, Bao XM (2002) Correlation of electroluminescence with Ge nanocrystal sizes in Ge-SiO2 co-sputtered films. Phys Lett A 300:307–310. doi: 10.1016/S0375-9601(02)00617-5 CrossRefGoogle Scholar
  36. Srinivasa Rao N, Pathak AP, Devaraju G, Saikiran V (2011) Growth and characterization of nc-Ge prepared by microwave annealing. Vacuum 85:927–931. doi: 10.1016/j.vacuum.2011.01.012 CrossRefGoogle Scholar
  37. Stavarache I, Lepadatu AM, Gheorghe NG, Costescu RM, Stan GE, Marcov D, Slav A, Iordache G, Stoica TF, Iancu V, Teodorescu VS, Teodorescu CM, Ciurea ML (2011) Structural investigations of Ge nanoparticles embedded in an amorphous SiO2 matrix. J Nanopart Res 13:221–232. doi: 10.1007/s11051-010-0021-4 CrossRefGoogle Scholar
  38. Takeoka S, Fujii M, Hayashi S, Yamamoto K (1998) Size-dependent near-infrared photoluminescence from Ge nanocrystals embedded in SiO2 matrices. Phys Rev B 58:7921–7925. doi: 10.1103/PhysRevB.58.7921 CrossRefGoogle Scholar
  39. Teodorescu VS, Ciurea ML, Iancu V, Blanchin MG (2008) Morphology of Si nano crystallites embedded in SiO2 matrix. J Mater Res 23:2990–2995. doi: 10.1557/jmr.2008.0358 CrossRefGoogle Scholar
  40. Tzeng SS, Li PW (2008) Enhanced 400–600 nm photo responsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots. Nanotechnology 19(235203):1–6. doi: 10.1088/0957-4484/19/23/235203 Google Scholar
  41. Zhang B, Shrestha S, Green MA, Conibeer G (2010a) Size controlled synthesis of Ge nanocrystals in SiO2 at temperatures below 400 °C using magnetron sputtering. Appl Phys Lett 96:261901. doi: 10.1063/1.3457864 CrossRefGoogle Scholar
  42. Zhang B, Shrestha S, Green MA, Conibeer G (2010b) Surface states induced high P-type conductivity in nano structured thin film composed of Ge nanocrystals in SiO2 matrix. Appl Phys Lett 97:132109. doi: 10.1063/1.3496031 CrossRefGoogle Scholar
  43. Zhang B, Yao Y, Patterson R, Shrestha S, Green MA, Conibeer G (2011) Electrical properties of conductive Ge nanocrystal thin films fabricated by low temperature in situ growth. Nanotechnology 22:125204. doi: 10.1088/0957-4484/22/12/125204 CrossRefGoogle Scholar
  44. Zhao J, Rebohle L, Gebel T, von Borany J, Skorupa W (2002) Bulk-limited conduction of Ge-implanted thermally grown SiO2 layers. Solid-State Electron 46:661–664. doi: 10.1016/S0038-1101(01)00322-7 CrossRefGoogle Scholar
  45. Zhen C, Liu Y, Ma L, Pang Z, Pan C, Hou D (2010) Ferromagnetism in Ge/SiO2 multilayer films. J Appl Phys 107:043901. doi: 10.1063/1.3294621 CrossRefGoogle Scholar
  46. Zheng F, Choi WK, Lin F, Tripathy S, Zhang JX (2008) Stress tuning of Ge nanocrystals embedded in dielectrics. J Phys Chem C 112:9223–9228. doi: 10.1021/jp801529j CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ionel Stavarache
    • 1
  • Ana-Maria Lepadatu
    • 1
  • Adrian V. Maraloiu
    • 1
  • Valentin S. Teodorescu
    • 1
  • Magdalena Lidia Ciurea
    • 1
  1. 1.National Institute of Materials PhysicsMagureleRomania

Personalised recommendations