Ordered quantum-ring chains grown on a quantum-dot superlattice template

  • Jiang Wu
  • Zhiming M. WangEmail author
  • Kyland Holmes
  • Euclydes MaregaJr.
  • Yuriy I. Mazur
  • Gregory J. Salamo
Brief Communication


One-dimensional ordered quantum-ring chains are fabricated on a quantum-dot superlattice template by molecular beam epitaxy. The quantum-dot superlattice template is prepared by stacking multiple quantum-dot layers and quantum-ring chains are formed by partially capping quantum dots. Partially capping InAs quantum dots with a thin layer of GaAs introduces a morphological change from quantum dots to quantum rings. The lateral ordering is introduced by engineering the strain field of a multi-layer InGaAs quantum-dot superlattice.


Quantum ring Molecular beam epitaxy Ordering Atomic force microscopy Photoluminescence 


  1. Baker JL, Widmer-Cooper A, Toney MF, Geissler PL, Alivisatos AP (2010) Device-scale perpendicular alignment of colloidal nanorods. Nano Lett 10:195–201CrossRefGoogle Scholar
  2. Blossey R, Lorke A (2002) Wetting droplet instability and quantum ring formation. Phys Rev E 65:021603CrossRefGoogle Scholar
  3. Bressler-Hill V, Varma S, Lorke A, Nosho BZ, Petroff PM, Weinberg WH (1995) Island scaling in strained heteroepitaxy: InAs/GaAs(001). Phys Rev Lett 74:3209CrossRefGoogle Scholar
  4. Chang Y, Jian S, Juang J (2010) Nanogrids and beehive-like nanostructures formed by plasma etching the self-organized SiGe islands. Nanoscale Res Lett 5:1456–1463CrossRefGoogle Scholar
  5. Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245CrossRefGoogle Scholar
  6. Fan Z, Razavi H, Do J, Moriwaki A, Ergen O, Chueh Y, Leu PW, Ho JC, Takahashi T, Reichertz LA, Neale S, Yu K, Wu M, Ager JW, Javey A (2009) Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater 8:648–653CrossRefGoogle Scholar
  7. Földi P, Molnár B, Benedict MG, Peeters FM (2005) Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction. Phys Rev B 71:033309CrossRefGoogle Scholar
  8. Govorov AO, Ulloa SE, Karrai K, Warburton RJ (2002) Polarized excitons in nanorings and the optical Aharonov-Bohm effect. Phys Rev B 66:081309CrossRefGoogle Scholar
  9. Huang Z, Shimizu T, Senz S, Zhang Z, Zhang X, Lee W, Geyer N, Gösele U (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred etching directions. Nano Lett 9:2519–2525CrossRefGoogle Scholar
  10. Huang Y, Dong X, Shi Y, Li CM, Li LJ, Chen P (2010) Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2:1485–1488CrossRefGoogle Scholar
  11. Kleemans NAJM, Bominaar-Silkens I, Fomin VM, Gladilin VN, Granados D, Taboada AG, García JM, Offermans P, Zeitler U, Christianen PCM, Maan JC, Devreese JT, Koenraad PM (2007) Oscillatory persistent currents in self-assembled quantum rings. Phys Rev Lett 99:146808CrossRefGoogle Scholar
  12. Kumah DP, Shusterman S, Paltiel Y, Yacoby Y, Clarke R (2009) Atomic-scale mapping of quantum dots formed by droplet epitaxy. Nat Nanotechnol. doi: 10.1038/nnano.2009.271 Google Scholar
  13. Lee J, Wang ZM, Dorogan VG, Mazur YI, Salamo GJ (2010) Evolution of various nanostructures and preservation of self-assembled InAs quantum dots during GaAs capping. IEEE Trans Nanotechnol 9:149–156CrossRefGoogle Scholar
  14. Li S, Xia J, Liu J, Yang F, Niu Z, Feng S, Zheng H (2001) InAs/GaAs single-electron quantum dot qubit. J Appl Phys 90:6151CrossRefGoogle Scholar
  15. Ling H, Lee C (2007) Evolution of self-assembled InAs quantum ring formation. J Appl Phys 102:024314CrossRefGoogle Scholar
  16. Mazur YI, Wang ZM, Tarasov GG, Xiao M, Salamo GJ, Tomm JW, Talalaev V, Kissel H (2005) Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures. Appl Phys Lett 86:063102CrossRefGoogle Scholar
  17. Mazur YI, Dorogan VG, Marega E Jr., Tarasov GG, Cesar DF, Lopez-Richard V, Marques GE, Salamo GJ (2009) Mechanisms of interdot coupling in (In,Ga)As/GaAs quantum dot arrays. Appl Phys Lett 94:123112Google Scholar
  18. Müller CM, Mornaghini FCF, Spolenak R (2008) Ordered arrays of faceted gold nanoparticles obtained by dewetting and nanosphere lithography. Nanotechnology 19:485306CrossRefGoogle Scholar
  19. Rosini M, Kratzer P, Magri R (2009) In adatom diffusion on InxGa1-xAs/GaAs(001): effects of strain, reconstruction and composition. J Phys 21:355007Google Scholar
  20. Shao Q, Balandin AA, Fedoseyev AI, Turowski M (2007) Intermediate-band solar cells based on quantum dot supracrystals. Appl Phys Lett 91:163503CrossRefGoogle Scholar
  21. Somaschini C, Bietti S, Koguchi N, Sanguinetti S (2009) Fabrication of multiple concentric nanoring structures. Nano Lett 9:3419–3424CrossRefGoogle Scholar
  22. Su S, He Y, Song S, Li D, Wang L, Fan C, Lee ST (2010) A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity. Nanoscale 2:1704–1707CrossRefGoogle Scholar
  23. Tersoff J, Teichert C, Lagally MG (1996) Self-organization in growth of quantum dot superlattices. Phys Rev Lett 76:1675CrossRefGoogle Scholar
  24. Wang ZM, Salamo GJ (2003) Surface dynamics during phase transitions of GaAs(100). Phys Rev B 67:125324CrossRefGoogle Scholar
  25. Wang ZM, Holmes K, Mazur YI, Salamo GJ (2004a) Fabrication of (In,Ga)As quantum-dot chains on GaAs(100). Appl Phys Lett 84:1931–1933CrossRefGoogle Scholar
  26. Wang ZM, Churchill H, George CE, Salamo GJ (2004b) High anisotropy of lateral alignment in multilayered (In,Ga)As/GaAs(100) quantum dot structures. J Appl Phys 96:6908CrossRefGoogle Scholar
  27. Wang ZM, Seydmohamadi S, Lee JH, Salamo GJ (2004c) Surface ordering of (In,Ga)As quantum dots controlled by GaAs substrate indexes. Appl Phys Lett 85:5031CrossRefGoogle Scholar
  28. Wang BR, Sun BQ, Ji Y, Dou XM, Xu ZY, Wang ZM, Salamo GJ (2008) Optical study of lateral carrier transfer in (In,Ga)As/GaAs quantum-dot chains. Appl Phys Lett 93:011107CrossRefGoogle Scholar
  29. Wang ZM, Rodriguez C, Seydmohamadi S, Mazur YI, Xie YZ, Salamo GJ (2009) Lateral alignment of InGaAs quantum dots as function of spacer thickness. Appl Phys Lett 94:083107CrossRefGoogle Scholar
  30. Wei Q, Lian J, Lu W, Wang L (2008) Highly ordered Ga nanodroplets on a GaAs surface formed by a focused ion beam. Phys Rev Lett 100:076103CrossRefGoogle Scholar
  31. Wen H, Wang ZM, Salamo GJ (2004) Atom-resolved scanning tunneling microscopy of (In,Ga)As quantum wires on GaAs(311)A. Appl Phys Lett 84:1756CrossRefGoogle Scholar
  32. Wu J, Wang ZM, Holmes K, Marega E Jr, Zhou Z, Li H, Mazur YI, Salamo GJ (2012) Laterally aligned quantum rings: from one-dimensional chains to two-dimensional arrays. Appl Phys Lett 100:203117Google Scholar
  33. Zhou Z, Wang Y, Xu D, Zhang Y (2010) Fabrication of Cu2ZnSnS4 screen printed layers for solar cells. Solar Energy Mater Solar Cells 94:2042–2045CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jiang Wu
    • 1
    • 2
  • Zhiming M. Wang
    • 1
    • 2
    Email author
  • Kyland Holmes
    • 2
  • Euclydes MaregaJr.
    • 2
  • Yuriy I. Mazur
    • 2
  • Gregory J. Salamo
    • 2
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Arkansas Institute of Nanoscale Materials Science and EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations