Advertisement

Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

  • C. BuschEmail author
  • G. Schierning
  • R. Theissmann
  • A. Nedic
  • F. E. Kruis
  • R. Schmechel
Research Paper

Abstract

The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In2O3. The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10−6 cmV−1 s−1, the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

Keywords

Gas-phase deposition Thin-film transistor Semiconducting oxides Nanoparticles 

Notes

Acknowledgments

The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the financial support within the collaborative research center SFB 445.

References

  1. Adamopoulos G, Thomas S, Wöbkenberg PH, Bradley DDC, McLachlan MA, Anthopoulos TD (2011) High-mobility low-voltage ZnO and Li-doped ZnO transistors based on ZrO2 high-k dielectric grown by spray pyrolysis in ambient air. Adv Mater 23(16):1894–1898CrossRefGoogle Scholar
  2. Bashir A, Wöbkenberg PH, Smith J, Ball JM, Adamopoulos G, Bradley DDC, Anthopoulos TD (2009) High-performance zinc oxide transistors and circuits fabricated by spray pyrolysis in ambient atmosphere. Adv Mater 21(21):2226–2231CrossRefGoogle Scholar
  3. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nat. 347(6293):539–541CrossRefGoogle Scholar
  4. Enoki H, Echigoya J, Suto H (1991) The intermediate compound in the In2O3–SnO2 system. J Mater Sci 26(15):4110–4115CrossRefGoogle Scholar
  5. Fortunato EMC, Barquinha PMC, Pimentel ACMBG, Gonçalves AMF, Marques AJS, Pereira LMN, Martins RFP (2005) Fully transparent ZnO thin-film transistor produced at room temperature. Adv Mater 17(5):590–594CrossRefGoogle Scholar
  6. Friedlander SK (2000) Smoke, dust, and haze: fundamentals of aerosol dynamics, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  7. Hontañón E, Kruis FE (2009) A differential mobility analyzer (DMA) for size selection of nanoparticles at high flow rates. Aerosol Sci Technol 43(1):25–37CrossRefGoogle Scholar
  8. Kennedy MK, Kruis FE, Fissan H (2003a) Fully automated, gas sensing, and electronic parameter measurement setup for miniaturized nanoparticle gas sensors. Rev Sci Instrum 74(11):4908–4915CrossRefGoogle Scholar
  9. Kennedy MK, Kruis FE, Fissan H, Mehta BR, Stappert S, Dumpich G (2003b) Tailored nanoparticle films from monosized tin oxide nanocrystals: particle synthesis, film formation, and size-dependent gas-sensing properties. J Appl Phys 93(1):551–560CrossRefGoogle Scholar
  10. Levy DH, Freeman D, Nelson SF, Cowdery-Corvan PJ, Irving LM (2008) Stable ZnO thin film transistors by fast open air atomic layer deposition. Appl Phys Lett 92(19):192101CrossRefGoogle Scholar
  11. Leyva AG, Granada M, Rodriguez DF, Troiani HE (2011) Synthesis of SnO2 tubular nanostructures on top of a silicon nitride surface using polymeric templates and their characterization as gas sensor. J Nanopart Res 13:5129–5134CrossRefGoogle Scholar
  12. Mädler L, Lall AA, Friedlander SK (2006a) One-step aerosol synthesis of nanoparticle agglomerate films: simulation of film porosity and thickness. Nanotechnology 17(19):4783–4795CrossRefGoogle Scholar
  13. Mädler L, Roessler A, Pratsinis SE, Sahm T, Gurlo A, Barsan N, Weimar U (2006b) Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles. Sens Actuators, B 114(1):283–295CrossRefGoogle Scholar
  14. Masuda S, Kitamura K, Okumura Y, Miyatake S, Tabata H, Kawai T (2003) Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J Appl Phys 93(3):1624–1630CrossRefGoogle Scholar
  15. Mechau N, Bubel S, Nikolova D, Hahn H (2010) Influence of stabilizers in ZnO nano-dispersions on the performance of solution-processed FETs. Phys Status Solidi (A) Appl Mater 207(7):1684–1688CrossRefGoogle Scholar
  16. Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Single crystal nanowire vertical surround-gate field-effect transistor. Nano Lett 4(7):1247–1252CrossRefGoogle Scholar
  17. Ogo Y, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H (2008) P-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl Phys Lett 93(3):032113CrossRefGoogle Scholar
  18. Otten F, Auer U, Kruis FE, Prost W, Tegude FJ, Fissan H (2002) Lithographic tools for producing patterned films composed of gas phase generated nanocrystals. Mater Sci Technol 18(7):717–720CrossRefGoogle Scholar
  19. Presley RE, Munsee CL, Park CH, Hong D, Wager JF, Keszler DA (2004) Tin oxide transparent thin-film transistors. J Phys D Appl Phys 37(20):2810–2813CrossRefGoogle Scholar
  20. Ramamoorthy R, Kennedy MK, Nienhaus H, Lorke A, Kruis FE, Fissan H (2003) Surface oxidation of monodisperse SnOx nanoparticles. Sens Actuators, B 88(3):281–285CrossRefGoogle Scholar
  21. Roy Chowdhury D, Ivaturi A, Nedic A, Einar Kruis F, Schmechel R (2010) Field effects on SnOx and SnO2 nanoparticles synthesized in the gas phase. Phys E: Low-Dimens Syst Nanostruct 42(9):2471–2476CrossRefGoogle Scholar
  22. Sanghyun J, David BJ, Gang L, Antonio F, Tobin JM (2006) Effects of bias stress on ZnO nanowire field-effect transistors fabricated with organic gate nanodielectrics. Appl Phys Lett 89(19):193506CrossRefGoogle Scholar
  23. Sun B, Sirringhaus H (2005) Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 5(12):2408–2413CrossRefGoogle Scholar
  24. Talapin DV, Murray CB (2005) Applied physics: PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310(5745):86–89CrossRefGoogle Scholar
  25. Tang CW, Vanslyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915CrossRefGoogle Scholar
  26. Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49(18):1210–1212CrossRefGoogle Scholar
  27. Vygranenko Y, Wang K, Nathan A (2007) Stable indium oxide thin-film transistors with fast threshold voltage recovery. Appl Phys Lett 91(26):263508CrossRefGoogle Scholar
  28. Wegner K, Piseri P, Vahedi Tafreshi H, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D Appl Phys 39(22):R439–R459CrossRefGoogle Scholar
  29. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators, B 3(2):147–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. Busch
    • 1
    Email author
  • G. Schierning
    • 1
  • R. Theissmann
    • 1
  • A. Nedic
    • 1
  • F. E. Kruis
    • 1
  • R. Schmechel
    • 1
  1. 1.Faculty of Engineering and Center for NanoIntegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenDuisburgGermany

Personalised recommendations