Electrokinetic properties of poly-ε-caprolactone-based nanoparticles prepared by nanoprecipitation and emulsification-diffusion methods: a comparative study

  • C. E. Mora-Huertas
  • F. Couenne
  • H. Fessi
  • A. Elaissari
Research Paper


The aim of this work is to investigate the influence of the preparation method on the surface charge and electrokinetic properties of poly-ε-caprolactone-based particles using poloxamer 188 as stabilizing agent. To target such objective, two processes (the nanoprecipitation and the emulsification-diffusion) are used to prepare well-defined nanospheres ranging in hydrodynamic diameters from 100 to 200 nm. The effect of the materials used on the particle zeta potential is systematically studied to compare the two preparation methods. The polarity of the organic solvent directly affects the zeta potential of particles prepared via the emulsification-diffusion method. The results obtained suggest that the aqueous phase used for preparing particles affects the possible re-arrangement of polymers during the emulsification step. As the aqueous phase is saturated with the organic solvent, the polar and the non-polar moieties of the polymer chains might be re-conformed following organic solvent diffusion from the particle core to the continuous phase. Regarding the nanoprecipitation process, the electrokinetic properties of the particles were found to be organic solvent independent, but principally affected by the pH and the salinity of the aqueous phase used during the particle preparation.


Nanoparticle Nanoprecipitation Emulsification-diffusion Zeta potential Surface charge Electrokinetic Colloids 



C.M. was supported by a grant from Departamento Administrativo de Ciencia, Tecnología e Innovación - Colciencias (Colombia). She also acknowledges to Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Farmacia.


  1. Ahlin P, Kristl J, Kristl A, Vrečer F (2002) Investigation of polymeric nanoparticles as carriers of enalaprilat for oral administration. Int J Pharm 239:113–120CrossRefGoogle Scholar
  2. Ameller T, Marsaud V, Legrand P, Gref R, Barrat G, Renoir JM (2003) Polyester–poly(ethylene glycol) nanoparticles loaded with the pure antiestrogen RU 58668: physicochemical and opsonisation properties. Pharm Res 20:1063–1070CrossRefGoogle Scholar
  3. Ameller T, Marsaud V, Legrand P, Gref R, Renoir JM (2004) Pure antiestrogen RU 58668-loaded nanospheres: morphology, cell activity and toxicity studies. Eur J Pharm Sci 21:361–370CrossRefGoogle Scholar
  4. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Livaniou E, Evangelatos G, Ithakissios DS (2003) Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles. Int J Pharm 259:115–127CrossRefGoogle Scholar
  5. Bellmann C, Klinger C, Opfermann A, Böhme F, Adler HJP (2002) Evaluation of surface modification by electrokinetic measurements. Prog Org Coat 44:93–98CrossRefGoogle Scholar
  6. Bera D, Lahiri D, de Leonardis A, De KB, Nag A (2006) A novel azeotropic mixture for solvent extraction of edible oils. Agr Eng Int CIGR J VIII:1–6Google Scholar
  7. Brooks DE (1973) The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. II. A model for the effect of adsorbed polymer on the diffuse double layer. J Colloid Interface Sci 43:687–699CrossRefGoogle Scholar
  8. Brooks DE, Seaman GVF (1973) The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. I. Models for the zeta potential increase. J Colloid Interface Sci 43:670–686CrossRefGoogle Scholar
  9. Calvo P, Vila-Jato JL, Alonso MJ (1997) Effect of lysozyme on the stability of polyester nanocapsules and nanoparticles: stabilization approaches. Biomaterials 18:1305–1310CrossRefGoogle Scholar
  10. Campagne C, Devaux E, Perwuelz A, Cazé C (2002) Electrokinetic approach of adhesion between polyester fibres and latex matrices. Polymer 43:6669–6676CrossRefGoogle Scholar
  11. Couvreur P, Barrat G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug 19:99–134CrossRefGoogle Scholar
  12. Dukhin SS (1991) Electrokinetic phenomena of the second kind and their applications. Adv Colloid Interface Sci 35:173–196CrossRefGoogle Scholar
  13. Egorova EM (2001) Some applications of the Dukhin theory in studies of lipid membranes. Colloid Surf A 192:317–330CrossRefGoogle Scholar
  14. Einarson MB, Berg JC (1993) Electrosteric stabilization of colloidal latex dispersions. J Colloid Interface Sci 155:165–172CrossRefGoogle Scholar
  15. Elimelech M, O’melia CR (1990) Effect of electrolyte type on the electrophoretic mobility of polystyrene latex colloids. Colloid Surface 44:165–178CrossRefGoogle Scholar
  16. Fattal E, Vauthier C (2002) Nanoparticles as drug delivery systems. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, New York, pp 1864–1882Google Scholar
  17. Fernández A, Martín A, Callejas J, Hidalgo R (1994) On the calculation of electrokinetic potential and Hamaker constant of model colloids. J Colloid Interface Sci 162:257–260CrossRefGoogle Scholar
  18. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55:R1–R4CrossRefGoogle Scholar
  19. Fonseca C, Simões S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286CrossRefGoogle Scholar
  20. Furtado VC, Legrand P, Gulik A, Bourdon O, Gref R, Labarre D, Barrat G (2001) Relationship between complement activation, cellular uptake and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials 22:2967–2979CrossRefGoogle Scholar
  21. Gadzinowski M, Slomkowski S, Elaissari A, Pichot C (2000) Phase transfer and characterization of poly(ε-caprolactone) and poly(l-lactide) microspheres. J Biomater Sci Polym Ed 11:459–480CrossRefGoogle Scholar
  22. Gessner A, Lieske A, Paulke BR, Müller RH (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54:165–170CrossRefGoogle Scholar
  23. Giannavola C, Bucolo C, Maltese A, Paolino D, Vandelli MA, Puglisi G, Lee VHL, Fresta M (2003) Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanospheres and effect of PEG coating on ocular drug bioavailability. Pharm Res 20:584–590CrossRefGoogle Scholar
  24. Góral M, Shaw DG, Maczynski A, Wisniewska B, Jezierski A (2009) IUPAC-NIST solubility data series. Esters with water—revised and updated. Part 1. C2 to C4 esters. J Phys Chem Ref Data 38:1093–1127CrossRefGoogle Scholar
  25. Govender T, Riley T, Ehtezazi T, Garnett MC, Stolnik S, Illum L, Davis SS (2000) Defining the drug incorporation properties of PLA–PEG nanoparticles. Int J Pharm 199:95–110CrossRefGoogle Scholar
  26. Hariharan S, Bhardwaj V, Bala I, Sitterberg J, Bakowsky U, Ravi Kumar MNV (2006) Design of estradiol loaded PLGA nanoparticulate formulations: a potential oral delivery system for hormone therapy. Pharm Res 23:184–195CrossRefGoogle Scholar
  27. Hiemenz PC, Rajagopalan R (1997) Principles of colloid and surface chemistry. CRC Press, Boca RatonGoogle Scholar
  28. Hirsjärvi S, Peltonen L, Hirvonen J (2008) Surface pressure measurements in particle interaction and stability studies of poly(lactic acid) nanoparticles. Int J Pharm 348:153–160CrossRefGoogle Scholar
  29. Hunter RJ (1981) Zeta potential in colloid science. Principles and applications. Academic Press Inc., LondonGoogle Scholar
  30. Inglesby MK, Gray GM, Wood DF, Gregorski KS, Robertson RG, Sabellano GP (2005) Surface characterization of untreated and solvent-extracted rice straw. Colloid Surf B 43:83–94CrossRefGoogle Scholar
  31. Ishikawa Y, Katoh Y, Ohshima H (2005) Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration. Colloid Surf B 42:53–58CrossRefGoogle Scholar
  32. Jacobasch HJ (1989) Characterization of solid surfaces by electrokinetic measurements. Prog Org Coat 17:115–133CrossRefGoogle Scholar
  33. Joo HH, Lee HY, Guan YS, Kim JC (2008) Colloidal stability and in vitro permeation study of poly(ε-caprolactone) nanocapsules containing Hinokitiol. J Ind Eng Chem 14:608–613CrossRefGoogle Scholar
  34. Jung T, Breitenbach A, Kissel T (2000) Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. J Control Release 67:157–169CrossRefGoogle Scholar
  35. Keusch P (2003) Kinetics—alkaline hydrolysis of ethyl acetate—second order reaction. University of Regensburg. http://www.uniregensburg.de/Fakultaeten/nat_Fak_IV/Organische_Chemie/Didaktik/Keusch/chembox_etac-e.htm. Accessed 15 may 2011
  36. Konan YN, Cerny R, Favet J, Berton M, Gurny R, Allémann E (2003) Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm 55:115–124CrossRefGoogle Scholar
  37. Kwon HY, Lee JY, Choi SW, Jang Y, Kim JH (2001) Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method. Colloid Surf A 182:123–130CrossRefGoogle Scholar
  38. Legrand P, Barrat G, Mosqueira V, Fessi H, Devissaguet JP (1999) Polymeric nanocapsules as drug delivery systems. A review. STP Pharm Sci 9:411–418Google Scholar
  39. Leroueil M, Fluckiger L, Kim Y, Hoffman M, Maincent P (1998) Preparation and characterization of nanoparticles containing antihypertensive agent. Eur J Pharm Biopharm 46:137–143CrossRefGoogle Scholar
  40. Leroux JC, Allémann E, Doelker E, Gurny R (1995) New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur J Pharm Biopharm 41:14–18Google Scholar
  41. Lertsutthiwong P, Rojsitthisak P, Nimmannit U (2008) Preparation of turmeric oil-loaded chitosan–alginate biopolymeric nanocapsules. Mater Sci Eng, C 29:856–860CrossRefGoogle Scholar
  42. Limayem I, Charcosset C, Fessi H (2004) Purification of nanoparticle suspensions by a concentration/diafiltration process. Sep Purif Technol 38:1–9CrossRefGoogle Scholar
  43. Lück M, Paulke BR, Schröder W, Blunk T, Müller RH (1998) Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J Biomed Mater Res 39:478–485CrossRefGoogle Scholar
  44. Makino K, Ohshima H (2010) Electrophoretic mobility of a colloidal particle with constant surface charge density. Langmuir 26:18016–18019CrossRefGoogle Scholar
  45. Moinard D, Chevalier Y, Briançon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion-diffusion process. J Colloid Interface Sci 317:458–468CrossRefGoogle Scholar
  46. Montasser I, Briançon S, Lieto J, Fessi H (2000) Méthodes d’obtention et mécanismes de formation de nanoparticules polymériques. J Pharm Belg 55:155–167Google Scholar
  47. Mora CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142CrossRefGoogle Scholar
  48. Mora CE, Fessi H, Elaissari A (2011) Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods. Critical comparison. Adv Colloid Interface Sci 163:90–122CrossRefGoogle Scholar
  49. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, Puglisi G (2006) PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm 325:172–179CrossRefGoogle Scholar
  50. Nabzar L, Duracher D, Elaissari A, Chauveteau G, Pichot C (1998) Electrokinetic properties and colloidal stability of cationic amino-containing n-isopropylacrylamide-styrene copolymer particles bearing different shell structures. Langmuir 14:5062–5069CrossRefGoogle Scholar
  51. Ohshima H, Healy TW, White LR (1982) Accurate analytic expressions for the surface charge density/surface potential relationship and double-layer potential distribution for a spherical colloidal particle. J Colloid Interface Sci 90:17–26CrossRefGoogle Scholar
  52. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102CrossRefGoogle Scholar
  53. Pinto C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2:8–21CrossRefGoogle Scholar
  54. Prego C, Fabre M, Torres D, Alonso MJ (2006) Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. Pharm Res 23:549–556CrossRefGoogle Scholar
  55. Quintanar D, Alléman E, Doelker E, Fessi H (1998a) Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 15:1056–1062CrossRefGoogle Scholar
  56. Quintanar D, Allémann E, Fessi H, Doelker E (1998b) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128CrossRefGoogle Scholar
  57. Riley T, Govender T, Stolnik S, Xiong CD, Garnett MC, Illum L, Davis SS (1999) Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloid Surf B 16:147–159CrossRefGoogle Scholar
  58. Sahana DK, Mittal G, Bhardwaj V, Ravi Kumar MNV (2008) PLGA nanoparticles for oral delivery of hydrophobic drugs: Influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. J Pharm Sci 97:1530–1542CrossRefGoogle Scholar
  59. Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly(D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–114CrossRefGoogle Scholar
  60. Santander MJ, Jódar AB, Csaba N, Bastos D, Ortega JL (2006) Colloidal stability of pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J Colloid Interface Sci 302:522–529CrossRefGoogle Scholar
  61. Santander MJ, Stauner T, Loretz B, Ortega JL, Bastos D, Wenz G, Schaefer UF, Lehr CM (2010) Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release 141:85–92CrossRefGoogle Scholar
  62. Schulz SF, Gisler T, Borkovec M, Sticher H (1994) Surface charge on functionalized latex spheres in aqueous colloidal suspensions. J Colloid Interface Sci 164:88–98CrossRefGoogle Scholar
  63. Schumacher GA, van de Ven TGM (1987) Brownian motion of charged colloidal particles surrounded by electric double layers. Faraday Discuss Chem Soc 83:75–85CrossRefGoogle Scholar
  64. Seebergh JI, Berg JC (1997) The effect of organic cosolvent on the aggregation stability of an aqueous polystyrene latex dispersion. Colloid Surf A 121:89–98CrossRefGoogle Scholar
  65. Shakesheff KM, Evora C, Soriano I, Langer R (1997) The adsorption of poly(vinyl alcohol) to biodegradable microparticles studied by x-ray photoelectron spectroscopy (XPS). J Colloid Interface Sci 185:538–547CrossRefGoogle Scholar
  66. Shin SB, Cho HY, Kim DD, Choi HG, Lee YB (2010) Preparation and evaluation of tacrolimus-loaded nanoparticles for lymphatic delivery. Eur J Pharm Biopharm 74:164–171CrossRefGoogle Scholar
  67. Siparsky GL, Voorhees KJ, Miao F (1998) Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Environ Polym Degrad 6:31–41CrossRefGoogle Scholar
  68. Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF (2004) Surface properties and biocompatibility of solvent-cast poly(ε-caprolactone) films. Biomaterials 25:4741–4748CrossRefGoogle Scholar
  69. Tourinho FA, Campos AFC, Aquino R, Lara MCFL, da Silva GJ, Depeyrot J (2002) Surface charge density determination in electric double layered magnetic fluids. Braz J Phys 32:501–508CrossRefGoogle Scholar
  70. Trimaille T, Pichot C, Elaissari A, Fessi H, Briançon S, Delair T (2003) Poly(D,L-lactic acid) nanoparticle preparation and colloidal characterization. Colloid Polym Sci 281:1184–1190CrossRefGoogle Scholar
  71. Van den Hoven JJ, Busterbosch BH (1987) Some peculiarities in the surface charge of monodisperse polystyrene particles: the affect of preparation, cleaning and handling. J Colloid Interface Sci 115:559–560CrossRefGoogle Scholar
  72. Van Krevelen DW, te Nijenhuis K (2009) Properties of polymers. Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, AmsterdamGoogle Scholar
  73. Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058CrossRefGoogle Scholar
  74. Zhang F, Ali Z, Amin F, Feltz A, Cheim M, Parak WJ (2010) Ion and pH sensing with colloidal nanoparticles: influence of surface charge on sensing and colloidal properties. ChemPhysChem 11:730–735CrossRefGoogle Scholar
  75. Zhu Y, Zhang G, Yang H, Hong X (2005) Influence of surfactants on the parameters of polylactide nanocapsules containing insulin. J Surf Deterg 8:353–358CrossRefGoogle Scholar
  76. Zwetsloot JPH, Leyte JC (1994) Conductometric titration of latex with acidic surface groups. J Colloid Interface Sci 163:362–371CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • C. E. Mora-Huertas
    • 1
    • 2
  • F. Couenne
    • 1
    • 2
  • H. Fessi
    • 1
    • 2
  • A. Elaissari
    • 1
    • 2
  1. 1.Université de LyonLyonFrance
  2. 2.Université Lyon 1, Villeurbanne, CNRS, UMR 5007, Laboratoire d’Automatique et de Génie des Procédés, LAGEP-CPE-308GVilleurbanneFrance

Personalised recommendations