Advertisement

Synthesis and surface modification of uniform MFe2O4 (M = Fe, Mn, and Co) nanoparticles with tunable sizes and functionalities

  • Lourdes I. Cabrera
  • Álvaro Somoza
  • José F. Marco
  • Carlos J. Serna
  • M. Puerto Morales
Research Paper

Abstract

Cubic monodisperse MFe2O4 ferrite nanoparticles (M = Fe, Co, and Mn) with tunable sizes between 7 and 20 nm and a narrow size distribution have been achieved in a one step synthesis by thermal decomposition of Fe(III), Co (II), and Mn(II) oleates. These nanoparticles have been functionalized with dimercaptosuccinic acid (DMSA), 11-mercaptoundecanoic acid (MUA), and bis(carboxymethyl)(2-maleimidylethyl)ammonium 4-toluenesulfonate (MATS) to grant them aqueous stability and the possibility for further functionalization with different biomolecules. Their structural, magnetic, and colloidal properties have also been studied to determine their chemical and physical properties and the degree of stability under physiological conditions that will determine their future use in biomedical applications.

Keywords

Ferrites Nanoparticles Thermal decomposition 

Abbreviations

NP

Nanoparticles

MUA

Dimercaptosuccinic acid: DMSA: 11-mercaptoundecanoic acid

MATS

bis(carboxymethyl)(2-maleimidylethyl)ammonium 4-toluenesulfonate

DNA

Deoxyribonucleic acid

RNA

Ribonucleic acid

RES

Reticuloendothelial system

rpm

Revolutions per minute

DMSO

Dimethyl sulfoxide

KOH

Potassium hydroxide

HNO3

Nitric acid

DMF

N,N-dimethylformamide

ICP-OES

Inductively coupled plasma optical emission spectrometry

TEM

Transmission electron microscopy

TGA

Thermal gravimetric analysis

FTIR

Fourier transform infrared

XRD

X-ray diffraction

DLS

Dynamic light scattering

PBS

Phosphate buffered saline

Fe(ole)3

Iron (III) oleate

Mn(ole)2

Manganese (II) oleate

Co(ole)2

Cobalt (II) oleate

Hc

coercivity

Mr

Remanent magnetization

Ms

Saturation magnetic moment

RT

Room temperature

Fig

Figure

PZC

Point of zero charge

Notes

Acknowledgments

This work was supported by the Spanish Ministry of Science and Innovation (MAT2008-01489 to SVV MAT2009-14578-C03-01 for JFM, MAT2011-23641 to MPM, and CSD2007-00010 to MPM) and the Regional Government from Madrid (S009/MAT-1726 to MPM).

References

  1. Bagaria HG, Ada ET et al (2006) Understanding mercapto ligand exchange on the surface of FePt nanoparticles. Langmuir 22(18):7732–7737. doi: 10.1021/la0601399 CrossRefGoogle Scholar
  2. Brabers VAM (1969) Infrared spectra of cubic and tetragonal manganese ferrites. Phys Status Solidi B 33(2):563–572. doi: 10.1002/pssb.19690330209 CrossRefGoogle Scholar
  3. Bronstein LM, Atkinson JE et al (2011) Nanoparticles by decomposition of long chain iron carboxylates: from spheres to stars and cubes. Langmuir 27:3044–3055. doi: 10.1021/la104686d CrossRefGoogle Scholar
  4. Chen C-J, Lai H-Y et al (2009) Preparation of monodisperse iron oxide nanoparticles via the synthesis and decomposition of iron fatty acid complexes. Nanoscale Res Lett 4:1343–1350. doi: 10.1007/s11671-009-9403-x CrossRefGoogle Scholar
  5. Cheon J-W, Jun Y-W et al. (2007) MRI contrast agents containing water-soluble NPs of manganese oxide or manganese metal oxide. p 44Google Scholar
  6. Compton RG (1987) Electrode kinetics: reactions. Elsevier Publishing Company, New YorkGoogle Scholar
  7. Cullity BD, Graham CD (2009) Introduction to magnetic materials. Wiley, HobokenGoogle Scholar
  8. Duanmu C, Saha I et al (2006) Dendron-functionalized superparamagnetic NPs with switchable solubility in organic and aqueous media: matrices for homogeneous catalysis and potential MRI contrast agents. Chem Mater 18(25):5973–5981. doi: 10.1021/cm061782j CrossRefGoogle Scholar
  9. Fan Xa, Guan J et al (2010) Low-temperature synthesis, magnetic and microwave electromagnetic properties of subtoichiometric spinel Co ferrite octahedra. Eur J Inorg Chem 2010(3):419–426. doi: 10.1002/ejic.200900681 CrossRefGoogle Scholar
  10. Fauconnier N, Pons JN et al (1997) Thiolation of maghemite nps by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433CrossRefGoogle Scholar
  11. Figuerola A, Corato RD et al (2010) From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacol Res 62(2):1126–1143. doi: 10.1016/j.phrs.2009.12.01 CrossRefGoogle Scholar
  12. Guardia P, Batle-Brugal B et al (2007) Surfactant effects in magnetite nanoparticles of controlled size. J Magn Magn Mater 316:e756–e759. doi: 10.1016/j.jmmm.2007.03.085 CrossRefGoogle Scholar
  13. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nps for biomedical applications. Biomaterials 26(18):3995–4021. doi: 10.1016/j.biomaterials.2004.10.012 CrossRefGoogle Scholar
  14. Gyergyek S, Makovec D et al (2010) Influence of synthesis method on structural and magnetic properties of Co ferrite nps. J Nanopart Res 12:1263–1273. doi: 10.1007/s11051-009-9833-5 CrossRefGoogle Scholar
  15. Häggström L, Kamali S et al (2008) “Mössbauer and magnetization studies of iron oxide nanocrystals” Hyperfine Interact 183(1–3): 49–53. doi: 10.1007/s10751-008-9750-5 Google Scholar
  16. Hajdú A, Illés E et al (2009) Surface charging, polyanionic coating and colloid stability of magnetite nps. Colloids Surf A 347(1–3):104–108. doi: 10.1016/j.colsurfa.2008.12.039 CrossRefGoogle Scholar
  17. Han YC, Cha HG et al (2007) Synthesis of highly magnetized iron NPs by a solventless thermal decomposition method. J Phys Chem C 111(17):6. doi: 10.1021/jp0686285 CrossRefGoogle Scholar
  18. Horng L, Chern G et al (2004) Magnetic anisotropic properties in Fe3O4 and CoFe2O4 ferrite epitaxy thin films. J Magn Magn Mater 270(3):389–396. doi: 10.1016/j.jmmm.2003.09.005 CrossRefGoogle Scholar
  19. Hu F, MacRenaris KW et al (2009) Ultrasmall, water-soluble magnetite nps with high relaxivity for MRI. J Phys Chem C 113:20855–20860. doi: 10.1021/jp907216g CrossRefGoogle Scholar
  20. Hyeon T, Lee SS et al (2001) Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123(51):12798–12801. doi: 10.1021/ja016812s CrossRefGoogle Scholar
  21. Jain N, Wang Y et al (2009) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir 26(6):4465–4472. doi: 10.1021/la903513v CrossRefGoogle Scholar
  22. Jana NR, Chen Y et al (2004) Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 16(20):3931–3935. doi: 10.1021/cm049221k CrossRefGoogle Scholar
  23. Joshi HM, Lin YP et al (2009) Effects of shape and size of Co ferrite nanostructures on their MRI contrast and thermal activation. J Phys Chem C 113:11761–17767. doi: 10.1021/jp905776g Google Scholar
  24. Jun Y-w, Huh Y-M et al (2005) Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via MRI. J Am Chem Soc 127(16):5732–5733. doi: 10.1021/ja0422155 CrossRefGoogle Scholar
  25. Kraus A, Jainae K et al (2009) Synthesis of MPTS-modified Co ferrite NPs and their adsorption properties in relation to Au(III). J Colloid Interface Sci 338:359–365. doi: 10.1016/j.jcis.2009.06.045 CrossRefGoogle Scholar
  26. Kwon SG, Hyeon T (2008) Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc Chem Res 41(12):1696–1709. doi: 10.1021/ar8000537 CrossRefGoogle Scholar
  27. Laurent S, Dutz S et al (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci 166:8–23Google Scholar
  28. Lee J-H, Jang J-t et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotech 6:418–422. doi: 10.1028/NNANO.2011.95 CrossRefGoogle Scholar
  29. López-Cruz A, Barrera C et al (2009) Water dispersible iron oxide nps coated with covalently linked chitosan. J Mater Chem 19(37):6870–6876. doi: 10.1039/B908777J CrossRefGoogle Scholar
  30. Maaz K, Mumtaz A et al (2006) Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nps prepared by wet chemical route. J Magn Magn Mater 308:289–295. doi: 10.1016/j.jmm.2006.06.003 CrossRefGoogle Scholar
  31. Mathur S, Cavelius C et al (2009) Co ferrite NPs from single and multi-component precursor systems. Z Anorg Allg Chem 635(6–7):898–902. doi: 10.1002/zaac.200900010 CrossRefGoogle Scholar
  32. Méthivier C, Beccard B et al (2003) In situ analysis of a mercaptoundecanoic acid layer on Au in liquid phase, by PM-IRAS. Evidence for chemical changes with the solvent. Langmuir 19(21):8807–8812. doi: 10.1021/la0345789 CrossRefGoogle Scholar
  33. Mohammadi Z, Wang X et al (2010) Magnetic polyvinylamine nanoparticles by in situ precipitation reaction. J Polym Sci Part A 48(4):991–996. doi: 10.1002/pola.23847 CrossRefGoogle Scholar
  34. Naseri MG, Saion EB et al (2010) Simple synthesis and characterization of Co ferrite NPs by a thermal treatment method. J Nanomat 2010:8. doi: 10.1155/2010/907686 Google Scholar
  35. Ngo AT, Bonville P et al (2001) Spin canting and size effects in nanoparticles of nonstoichiometric cobalt ferrite. J Appl Phys 89(6):3370–3376. doi: 10.1063/1.1347001 CrossRefGoogle Scholar
  36. Nuzzo RG, Dubois LH et al (1990) Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J Am Chem Soc 112(2):558–569. doi: 10.1021/ja00158a012 CrossRefGoogle Scholar
  37. Park J, An K et al (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895. doi: 10.1038/nmat1251 CrossRefGoogle Scholar
  38. Park J, Joo J et al (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660. doi: 10.1002/anie.200603148 CrossRefGoogle Scholar
  39. Peng X, Wickham J et al (1998) Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions. J Am Chem Soc 120(21):5343–5344. doi: 10.1021/ja9805425 CrossRefGoogle Scholar
  40. Pino P d, Munoz-Javier A et al (2010) Gene silencing mediated by magnetic lipospheres tagged with small interfering RNA. Nano Lett 10(10):3914–3921. doi: 10.1021/nl102485v CrossRefGoogle Scholar
  41. Roca AG, Morales MP et al (2006) Synthesis of monodispersed magnetite particles from different organometallic precursors. IEEE Trans Magn 42(10):3025–3029. doi: 10.1109/TMAG.2006.880111 CrossRefGoogle Scholar
  42. Roca AG, Marco JF et al (2007) Effect of nature and particle size on properties of uniform magnetite and maghemite NPs. J Phys Chem C 111(50):18577–18584. doi: 10.1021/jp075133m CrossRefGoogle Scholar
  43. Roca AG, Costo R et al (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42(22):224002–224012. doi: 10.1088/0022-3727/42/22/224002 CrossRefGoogle Scholar
  44. Ross CA, Smith HI et al (1999) Fabrication of patterned media for high density magnetic storage. J Vac Sci Technol B 17(6):3168–3176. doi: 10.1116/1.590974 CrossRefGoogle Scholar
  45. Salazar-Álvarez G, Qin J et al (2008) Cubic versus spherical magnetic NPs: the role of surface anisotropy. J Am Chem Soc 130:13234–13239. doi: 10.1021/ja0768744 CrossRefGoogle Scholar
  46. Salgueiriño-Maceira V, Liz-Marzán LM et al (2004) Water-based ferrofluids from FexPt1-x NPs synthesized in organic media. Langmuir 20(16):6946–6950. doi: 10.1021/la049300a CrossRefGoogle Scholar
  47. Sangmanee M, Maensiri S (2009) “Nanostructures and magnetic properties of Co ferrite (CoFe2O4) fabricated by electrospinning” Appl Phys A 97(1): 167–177 doi: 10.1007/s00339-009-5256-5
  48. Schabes ME (1991) Micromagnetic theory of non-uniform magnetization processes in magnetic recording particles. J Magn Magn Mater 95(3):249–288. doi: 10.1016/0304-8853(91)90225-Y CrossRefGoogle Scholar
  49. Sharma SK, Vargas JM et al (2011) “Synthesis and ageing effect in FeO nanoparticles: transformation to core–shell FeO/Fe3O4 and their magnetic characterization.” J Alloys Comp 509(22):6414–6417 doi: 10.1016/j.jallcom.2011.03.072
  50. Simeonidis K, Mourdikoudis S et al (2008) “Shape and composition oriented synthesis of Co NPs.” Phys Adv Mater Winter Sch: 8 ppGoogle Scholar
  51. Socrates G (2004) Infrared and raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, ChichesterGoogle Scholar
  52. Song Q, Zhang J (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126(19):6164–6168. doi: 10.1021/ja049931r CrossRefGoogle Scholar
  53. Sun S, Zeng H et al (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) NPs. J Am Chem Soc 126(1):273–279. doi: 10.1021/ja0380852 CrossRefGoogle Scholar
  54. Taboada E, Rodríguez E et al (2007) Relaxometric and magnetic characterization of ultrasmall iron oxide NPs with high magnetization. Evaluation as potential T1 MRI contrast agents for molecular imaging. Langmuir 23(8):4583–4588. doi: 10.1021/la063415s CrossRefGoogle Scholar
  55. Tirosh E, Shemer G et al (2006) Optimizing Co ferrite nanocrystal synthesis using a magneto-optical probe. Chem Mater 18(2):465–470. doi: 10.1021/cm052401p CrossRefGoogle Scholar
  56. Vestal CR, Song Q et al (2004) Effects of interparticle interactions upon the magnetic properties of CoFe2O4 and MnFe2O4 nanocrystals. J Phys Chem B 108(47):18222–18227. doi: 10.1021/jp0464526 CrossRefGoogle Scholar
  57. Vlaskou D, Mykhaylyk O et al (2010) Magnetic and acoustically active lipospheres for magnetically targeted nucleic acid delivery. Adv Funct Mater 20(22):3881–3894. doi: 10.1002/adfm.200902388 CrossRefGoogle Scholar
  58. Wang CY, Hong JM et al (2010) Facile method to synthesize oleic acid-capped magnetite nps. Chin Chem Lett 21(2):179–182. doi: 10.1016/j.cclet.2009.10.024 CrossRefGoogle Scholar
  59. Wiogo HTR, Lim M et al (2010) Stabilization of magnetic iron oxide NPs in biological media by fetal bovine serum (FBS). Langmuir 27(2):843–850. doi: 10.1021/la104278m CrossRefGoogle Scholar
  60. Xi L, Wang Z et al (2011) The enhanced microwave absorption property of CoFe2O4 nps coated with a Co3Fe7-Co nanoshell by thermal reduction. Nanotech 22(4):045707. doi: 10.1088/0957-4484/22/4/045707 CrossRefGoogle Scholar
  61. Xie J, Peng S et al (2006) One-pot synthesis of monodisperse iron oxide nps for potential biomedical applications. Pure Appl Chem 78(5):1003–1014. doi: 10.1351/pac200678051003 CrossRefGoogle Scholar
  62. Xu C, Xu K et al (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic NPs. J Am Chem Soc 126(32):9938–9939. doi: 10.1021/ja0464802 CrossRefGoogle Scholar
  63. Yanez-Vilar S, Sanchez-Andujar M et al (2009) A simple solvothermal synthesis of MFe2O4 (M = Mn, Co and Ni) NP. J Solid State Chem 182(10):2685–2690. doi: 10.1016/j.jssc.2009.07.028 CrossRefGoogle Scholar
  64. Yin M, O’Brien S (2003) Synthesis of monodisperse nanocrystals of manganese oxides. J Am Chem Soc 125(34):1080–1081. doi: 10.1021/ja0362656 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lourdes I. Cabrera
    • 1
    • 4
  • Álvaro Somoza
    • 2
  • José F. Marco
    • 3
  • Carlos J. Serna
    • 1
  • M. Puerto Morales
    • 1
  1. 1.Instituto de Ciencia de Materiales de Madrid, CSICMadridSpain
  2. 2.Faculty of Science Module C-IX, Instituto Madrileño de Estudios Avanzados-NanocienciaMadridSpain
  3. 3.Instituto de Química-Física “ROCASOLANO”, CSICMadridSpain
  4. 4.LA.M.M. c/o dipartimento di ChimicaUniversità degli Studi di FirenzeSesto F.no (Fi)Italy

Personalised recommendations