Advertisement

Homogeneous ZnO nanostructure arrays on GaAs substrates by two-step chemical bath synthesis

  • Chun-Yuan HuangEmail author
  • Tzung-Han Wu
  • Chiao-Yang Cheng
  • Yan-Kuin Su
Research Paper

Abstract

ZnO nanostructures, including nanowires, nanorods, and nanoneedles, have been deposited on GaAs substrates by the two-step chemical bath synthesis. It was demonstrated that the O2-plasma treatment of GaAs substrates prior to the sol–gel deposition of seed layers was essential to conformally grow the nanostructures instead of 2D ZnO bunches and grains on the seed layers. Via adjusting the growth time and concentration of precursors, nanostructures with different average diameter (26–225 nm), length (0.98–2.29 μm), and density (1.9–15.3 × 109 cm−2) can be obtained. To the best of our knowledge, this is the first demonstration of ZnO nanostructure arrays grown on GaAs substrates by the two-step chemical bath synthesis. As an anti-reflection layer on GaAs-based solar cells, the array of ZnO nanoneedles with an average diameter of 125 nm, a moderate length of 2.29 μm, and the distribution density of 9.8 × 109 cm−2 has increased the power conversion efficiency from 7.3 to 12.2 %, corresponding to a 67 % improvement.

Keywords

ZnO nanostructures Chemical synthesis Plasma treatment GaAs-based solar cells Energy conversion 

Notes

Acknowledgments

The authors are grateful to the National Science Council of the Republic of China, Taiwan, for funding this research under contract no. NSC 100-2221-E-143-005-MY2 and the LED Lighting Research Center of NCKU for the assistance of device characterization.

References

  1. Chen LY, Wu SH, Yin YT (2009) Catalyst-free growth of vertical alignment ZnO nanowire arrays by a two-stage process. J Phys Chem C 113:21572–21576CrossRefGoogle Scholar
  2. Cheng CY, Hong FCN, Huang CY (2010) Micro-and nanopatterned polymethylmethacrylate layers on plastic poly (ethylene terephthalate) substrates by modified roller-reversal imprint process. J Vac Sci Technol B 28:921–925CrossRefGoogle Scholar
  3. Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Low-temperature wafer-scale production of ZnO nanowire arrays. Angew Chem Int Ed 42:3031–3034CrossRefGoogle Scholar
  4. Hoffman RL, Norris BJ, Wager JF (2003) ZnO-based transparent thin-film transistors. Appl Phys Lett 82:733–735CrossRefGoogle Scholar
  5. Huang JS, Lin CF (2008) Influences of ZnO sol–gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing. J Appl Phys 103:014304 1–014304 5Google Scholar
  6. Lee YJ, Ruby DS, Peters DW, McKenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505CrossRefGoogle Scholar
  7. Qiu J, Li X, He W, Park SJ, Kim HK, Hwang YH, Lee JH, Kim YD (2009) The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 20:155603 1–155603 9Google Scholar
  8. Schrier J, Demchenko DO, Wang LW (2007) Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. Nano Lett 7:2377–2382CrossRefGoogle Scholar
  9. Su YK, Peng SM, Ji LW, Wu CZ, Cheng WB, Liu CH (2009) Ultraviolet ZnO nanorod photosensors. Langmuir 26:603–606CrossRefGoogle Scholar
  10. Su BY, Su YK, Tseng ZL, Shih MF, Cheng CY, Wu TH, Wu CS, Yeh JJ, Ho PY, Juang YD, Chu SY (2011) Antireflective and radiation resistant ZnO thin films for the efficiency enhancement of GaAs photovoltaics. J Electrochem Soc 158:H267–H270CrossRefGoogle Scholar
  11. Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4:42–46CrossRefGoogle Scholar
  12. Yang LL, Zhao QX, Willander M, Yang JH (2009) Effective way to control the size of well-aligned ZnO nanorod arrays with two-step chemical bath deposition. J Cryst Growth 311:1046–1050Google Scholar
  13. Yavari I, Mahjoub AR, Kowsari E, Movahedi M (2009) Synthesis of ZnO nanostructures with controlled morphology and size in ionic liquids. J Nanopart Res 11:861–868CrossRefGoogle Scholar
  14. Zhang JY, Li PJ, Sun H, Shen X, Deng TS, Zhu KT, Zhang QF, Wu JL (2008) Ultraviolet electroluminescence from controlled arsenic-doped ZnO nanowire homojunctions. Appl Phys Lett 93:021116 1–021116 3Google Scholar
  15. Zhang XM, Lu MY, Zhang Y, Chen LJ, Wang ZL (2009) Fabrication of a high‐brightness blue‐light‐emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater 21:2767–2770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Chun-Yuan Huang
    • 1
    Email author
  • Tzung-Han Wu
    • 2
    • 3
  • Chiao-Yang Cheng
    • 2
    • 3
    • 4
  • Yan-Kuin Su
    • 2
    • 3
  1. 1.Department of Applied ScienceNational Taitung UniversityTaitungTaiwan
  2. 2.Institute of Microelectronics, Advanced Optoelectronic Technology CenterNational Cheng Kung UniversityTainanTaiwan
  3. 3.LED Lighting and Research CenterNational Cheng Kung UniversityTainanTaiwan
  4. 4.Wafer Works Optronics CorporationChung-Li, TaoyuanTaiwan

Personalised recommendations