Enhancement of antibiotic effect via gold:silver-alloy nanoparticles

  • Margarida Moreira dos Santos
  • Margarida João Queiroz
  • Pedro V. Baptista
Brief Communication


A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5 ± 7.5 nm mean diameter on the antimicrobial effect of (i) kanamycin on Escherichia coli (Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain of Staphylococcus aureus (Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.


Gold:silver-alloy nanoparticles Antibiotic Antimicrobial Gram-negative bacteria E. coli S. aureus 



We thank Fundação para a Ciência e Tecnologia (MCTES) for financial support: CIGMH, PTDC/CTM/NAN/109877/2009, PTDC/QUI–QUI/112597/2009 and Ciência 2007 Program. de Lencastre H is acknowledged for kindly providing S. aureus COL.


  1. Abubakar I, Irvine L, Aldus C, Wyatt G, Fordham R et al (2007) A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technol Assess 11(36):1–216Google Scholar
  2. Ansari MA, Khan HM, Khan AA, Malik A, Sultan A, Shahid M, Shujatullah F, Azam A (2011) Evaluation of antibacterial activity of silver nanoparticles against MSSA and MSRA on isolates from skin infections. Biol Med 3:141–146Google Scholar
  3. Archer G (1998) Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181CrossRefGoogle Scholar
  4. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950CrossRefGoogle Scholar
  5. Baptista PV, Doria G, Conde J (2011a) Alloy metal nanoparticles for multicolor cancer diagnostics. In: Colloidal quantum dots/nanocrystals for biomedical applications VI, proceedings of SPIE, vol 7909. SPIE, San FranciscoGoogle Scholar
  6. Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I, Eaton P, Pereira E, Franco R (2011b) Nanoparticles in molecular diagnostics. Prog Mol Biol Transl Sci 104:427–488CrossRefGoogle Scholar
  7. Chambers H, Deleo F (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629–641CrossRefGoogle Scholar
  8. Cho KH, Park JE, Osaka T et al (2005) The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim Acta 51:956–960CrossRefGoogle Scholar
  9. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S et al (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed 5:1085–1094CrossRefGoogle Scholar
  10. Conde J, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:751075. doi: 10.1155/2012/751075 Google Scholar
  11. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18CrossRefGoogle Scholar
  12. David M, Daum R (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23:616–687CrossRefGoogle Scholar
  13. De Lencastre H, Wu SW, Pinho MG, Ludovice A, Filipe S et al (1999) Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist 5:163–175CrossRefGoogle Scholar
  14. de Sousa MA, de Lencastre H (2004) Bridges from hospitals to the laboratory: genetic portraits of methicillin-resistant Staphylococcus aureus clones. FEMS Immunol Med Microbiol 40:101–111CrossRefGoogle Scholar
  15. Doria G, Dias JT, Larguinho M, Pereira E, Franco R, Baptista P (2010a) AuAg-alloy-nanoprobes for specific nucleic acid detection. NSTI-Nanotechnol Proc 3:62–65 (ISBN 978-1-4398-3415-2)Google Scholar
  16. Doria G, Larguinho M, Dias J, Pereira E, Franco R et al (2010b) Gold–silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology 21:255101CrossRefGoogle Scholar
  17. Dror-Ehre A, Mamane H, Belenkova T, Markovich G, Adin A (2009) Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339:521–526CrossRefGoogle Scholar
  18. Edwards-Jones V (2009) The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49:147–152CrossRefGoogle Scholar
  19. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287CrossRefGoogle Scholar
  20. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6:103–109CrossRefGoogle Scholar
  21. Grace A, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf 297:63–70CrossRefGoogle Scholar
  22. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against Gram-positive and Gram-negative bacteria. Nanomedicine NBM 8:37–45CrossRefGoogle Scholar
  23. Jain J, Arora S, Rajwade J, Omray P, Khandelwal S et al (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401CrossRefGoogle Scholar
  24. Jin T, Yiping H (2011) Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res. doi: 10.1007/s11051-011-0595-5
  25. Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB (2010) Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85:1115–1122CrossRefGoogle Scholar
  26. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141CrossRefGoogle Scholar
  27. Liz-Marzan L (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41CrossRefGoogle Scholar
  28. Marambio-Jones C, Hoek E (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  29. Neal AL (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371CrossRefGoogle Scholar
  30. Nyachuba D (2010) Foodborne illness: is it on the rise? Nutr Rev 68:257–269CrossRefGoogle Scholar
  31. Rastogi SK, Rutledge VJ, Gibson C, Newcombe DA, Branen JR, Branen AL (2011) Ag colloids and Ag clusters over EDAPTMS-coated silica nanoparticles: synthesis, characterization, and antibacterial activity against Escherichia coli. Nanomedicine 7:305–314CrossRefGoogle Scholar
  32. Rodriguez-Arguelles M, Sieiro C, Cao R, Nasi L (2011) Chitosan and silver nanoparticles as pudding with raisins with antimicrobial properties. J Colloid Interface Sci 364:80–84CrossRefGoogle Scholar
  33. Sabella S, Brunetti V, Vecchio G, Galeone A, Maiorano G, Cingolani R, Pomba PP (2011) Toxicity of citrate-capped AuNPs: Na in vitro and in vivo assessment. J Nanopart Res. doi: 10.1007/s11051-011-0590-x
  34. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  35. Wilcoxon J (2009) Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B 113:2647–2656CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Margarida Moreira dos Santos
    • 1
  • Margarida João Queiroz
    • 1
  • Pedro V. Baptista
    • 1
  1. 1.CIGMH, Departamento Ciências da Vida, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations