Advertisement

The effects of surface modification on the electrical properties of pn + junction silicon nanowires grown by an aqueous electroless etching method

  • Seulah Lee
  • Ja Hoon Koo
  • Jungmok Seo
  • Sung-Dae Kim
  • Kwang Hyun Lee
  • Seongil Im
  • Young-Woon Kim
  • Taeyoon LeeEmail author
Research Paper

Abstract

Although the aqueous electroless etching (AEE) method has received significant attention for the fabrication of silicon nanowires (SiNWs) due to its simplicity and effectiveness, SiNWs grown via the AEE method have a drawback in that their surface roughness is considerably high. Thus, we fabricated surface-modified pn + junction SiNWs grown by AEE, wherein the surface roughness was reduced by a sequential processes of oxide growth using the rapid thermal oxidation (RTO) cycling process and oxide removal with a hydrofluoric acid solution. High-resolution transmission electron microscopy analysis confirmed that the surface roughness of the modified SiNWs was significantly decreased compared with that of the as-fabricated SiNWs. After RTO treatment, the wettability of the SiNWs had dramatically changed from superhydrophilic to superhydrophobic, which can be attributed to the formation of siloxane groups on the native oxide/SiNW surfaces and the effect of the nanoscale structure. Due to the enhancement in surface carrier mobility, the current density of the surface-modified pn + junction SiNWs was approximately 6.3-fold greater than that of the as-fabricated sample at a forward bias of 4 V. Meanwhile, the photocurrent density of the surface-modified pn + junction SiNWs was considerably decreased as a result of the decreases in the light absorption area, light absorption volume, and light scattering.

Keywords

Silicon nanowire Aqueous electroless etching Rapid thermal oxidation Surface treatment p–n+ junction Superhydrophobicity Nanoelectronics 

Notes

Acknowledgments

This study was supported in part by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (2009-0093823) and the Converging Research Center Program through the Ministry of Education, Science and Technology (2011K000631). This study was also supported by the KARI-University Partnership program and an appointment to Mid-career Researcher Program at the NRF administered by the MEST (2009-0080290).

References

  1. Calarco R, Marso M, Richter T, Aykanat AI, Meijers R, vd Hart A, Stoica T, Luth H (2005) Size-dependent photoconductivity in MBE-grown GaN-nanowires. Nano Lett 5(5):981–984CrossRefGoogle Scholar
  2. Chen C-Y, Wu C-S, Chou C-J, Yen T-J (2008) Morphological control of single-crystalline silicon nanowire arrays near room temperature. Adv Mater 20(20):3811–3815CrossRefGoogle Scholar
  3. Cheng Y, Sullivan E (1974) Effect of coulomb scattering on silicon surface mobility. J Appl Phys 45(1):187–192CrossRefGoogle Scholar
  4. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3(2):149–152CrossRefGoogle Scholar
  5. Deal BE, Sklar M, Grove AS, Snow EH (1967) Characteristics of the surface-state charge (Q[sub ss]) of thermally oxidized silicon. J Electrochem Soc 114(3):266–274CrossRefGoogle Scholar
  6. Fang H, Wu Y, Zhao J, Zhu J (2006) Silver catalysis in the fabrication of silicon nanowire arrays. Nanotechnology 17:3768CrossRefGoogle Scholar
  7. Fang G, Cheng Y, Ai L, Li C, He J, Wang C, Huang H, Yuan L, Zhao X (2008) Fabrication and electrical and photosensitive properties of silicon nanowire pn homojunctions. Phys Status Solidi 205(11):2722–2728CrossRefGoogle Scholar
  8. Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10(3):1082–1087CrossRefGoogle Scholar
  9. Hasegawa S, Shiraki I, Tanikawa T, Petersen CL, Hansen TM, Boggild P, Grey F (2002) Direct measurement of surface-state conductance by microscopic four-point probe method. J Phys 14:8379Google Scholar
  10. Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175):163–167CrossRefGoogle Scholar
  11. Hollinger G, Himpsel FJ (1983) Oxygen chemisorption and oxide formation on Si(111) and Si(100) surfaces. J Vac Sci Technol A 1(2):640–645CrossRefGoogle Scholar
  12. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457):1471CrossRefGoogle Scholar
  13. Hong WK, Jo G, Kwon SS, Song S, Lee T (2008) Electrical properties of surface-tailored ZnO nanowire field-effect transistors. IEEE Trans Electron Devices 55(11):3020–3029CrossRefGoogle Scholar
  14. Hwang J-S, Kao M-C, Shiu J-M, Fan C-N, Ye S-C, Yu W-S, Lin H-M, Lin T-Y, Chattopadhyay S, Chen L-C, Chen K-H (2011) Photocurrent mapping in high-efficiency radial pn junction silicon nanowire solar cells using atomic force microscopy. J Phys Chem C 115(44):21981–21986CrossRefGoogle Scholar
  15. Jie J, Zhang W, Peng K, Yuan G, Lee CS, Lee ST (2008) Surface dominated transport properties of silicon nanowires. Adv Funct Mater 18(20):3251–3257CrossRefGoogle Scholar
  16. Ju S, Lee K, Janes DB, Yoon M-H, Facchetti A, Marks TJ (2005) Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics. Nano Lett 5(11):2281–2286CrossRefGoogle Scholar
  17. Juhasz R, Elfstrom N, Linnros J (2005) Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. Nano Lett 5(2):275–280CrossRefGoogle Scholar
  18. Jung JY, Guo Z, Jee SW, Um HD, Park KT, Hyun MS, Yang JM, Lee JH (2010) A waferscale Si wire solar cell using radial and bulk p-n junctions. Nanotechnology 21:445303CrossRefGoogle Scholar
  19. Kasap SO (2006) Principles of electronic materials and devices vol. 81. McGraw-Hill, New YorkGoogle Scholar
  20. Kuan WF, Chen LJ (2009) The preparation of superhydrophobic surfaces of hierarchical silicon nanowire structures. Nanotechnology 20(3):035605CrossRefGoogle Scholar
  21. Kumar P (2010a) Electric field and excimer laser nanostructuring of Ni and Si thin films. Adv Sci Lett 3(1):62–66CrossRefGoogle Scholar
  22. Kumar P (2010b) Trench-template fabrication of indium and silicon nanowires prepared by thermal evaporation process. J Nanopart Res 12(7):2473–2480CrossRefGoogle Scholar
  23. Kumar P, Krishna MG (2010) A comparative study of laser- and electric-field-induced effects on the crystallinity, surface morphology and plasmon resonance of indium and gold thin films. Phys status solidi 207(4):947–954CrossRefGoogle Scholar
  24. Kumar P, Ghanashyam Krishna M, Bhatnagar A, Bhattacharya A (2008) Template-assisted fabrication of nanowires. Int J Nanomanuf 2(5):477–495Google Scholar
  25. Lew KK, Redwing JM (2003) Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J Cryst Growth 254(1–2):14–22CrossRefGoogle Scholar
  26. Lin L, Sun X, Tao R, Feng J, Zhang Z (2011) The synthesis and photoluminescence properties of selenium-treated porous silicon nanowire arrays. Nanotechnology 22:075203CrossRefGoogle Scholar
  27. Moon K-J, Choi J-H, Lee T-I, Ham M-H, Maeng W-J, Hwang I, Kim H, Myoung J-M (2010) Electrical transport properties in electroless-etched Si nanowire field-effect transistors. Microelectron Eng 87(11):2407–2410CrossRefGoogle Scholar
  28. Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279(5348):208CrossRefGoogle Scholar
  29. Moslehi MM, Shatas SC, Saraswat KC (1985) Thin SiO[sub 2] insulators grown by rapid thermal oxidation of silicon. Appl Phys Lett 47(12):1353–1355CrossRefGoogle Scholar
  30. Nalaskowski J, Drelich J, Hupka J, Miller JD (2003) Adhesion between hydrocarbon particles and silica surfaces with different degrees of hydration as determined by the AFM colloidal probe technique. Langmuir 19(13):5311–5317CrossRefGoogle Scholar
  31. Ozdemir B, Kulakci M, Turan R, Unalan HE (2011) Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22:155606CrossRefGoogle Scholar
  32. Peng K-Q, Lee S-T (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23(2):198–215CrossRefGoogle Scholar
  33. Peng KQ, Yan YJ, Gao SP, Zhu J (2002) Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv Mater 14(16):1164–1167CrossRefGoogle Scholar
  34. Peng K, Yan Y, Gao S, Zhu J (2003) Dendrite assisted growth of silicon nanowires in electroless metal deposition. Adv Funct Mater 13(2):127–132CrossRefGoogle Scholar
  35. Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J (2005) Uniform, axial orientation alignment of one dimensional single crystal silicon nanostructure arrays. Angew Chem Int Ed 44(18):2737–2742CrossRefGoogle Scholar
  36. Peng K, Lu A, Zhang R, Lee ST (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18(19):3026–3035CrossRefGoogle Scholar
  37. Pierret RF (1996) Semiconductor device fundamentals. Addison-Wesley, ReadingGoogle Scholar
  38. Quere D (2008) Wetting and roughness. Annu Rev Mater Res 38:71–99CrossRefGoogle Scholar
  39. Revitz M, Raider SI, Gdula RA (1979) Effect of high-temperature, postoxidation annealing on the electrical properties of the Si–SiO[sub 2] interface. J Vac Sci Technol 16(2):345–347CrossRefGoogle Scholar
  40. Schafer S, Lyon S (1985) New model of the rapid initial oxidation of silicon. Appl Phys Lett 47(2):154–156CrossRefGoogle Scholar
  41. Wu Y, Yang P (2001) Direct observation of vapor–liquid–solid nanowire growth. J Am Chem Soc 123(13):3165–3166CrossRefGoogle Scholar
  42. Yogeswaran U, Chen S-M (2008) A Review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8(1):290–313CrossRefGoogle Scholar
  43. Zhang A, Kim H, Cheng J, Lo YH (2010) Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett 10(6):2117–2120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Seulah Lee
    • 1
  • Ja Hoon Koo
    • 1
  • Jungmok Seo
    • 1
  • Sung-Dae Kim
    • 2
  • Kwang Hyun Lee
    • 3
  • Seongil Im
    • 3
  • Young-Woon Kim
    • 2
  • Taeyoon Lee
    • 1
    Email author
  1. 1.Nanobio Device Laboratory, School of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea
  2. 2.In-situ Electron Microscopy Laboratory, Department of Materials Science and EngineeringSeoul UniversitySeoulKorea
  3. 3.Institute of Physics and Applied PhysicsYonsei UniversitySeoulKorea

Personalised recommendations