Advertisement

Are stirring and sonication pre-dispersion methods equivalent for in vitro toxicology evaluation of SiC and TiC?

  • Jorge MejiaEmail author
  • Vanessa Valembois
  • Jean-Pascal Piret
  • Frans Tichelaar
  • Marijn van Huis
  • Bernard Masereel
  • Olivier Toussaint
  • Joseph Delhalle
  • Zineb Mekhalif
  • Stéphane Lucas
Research Paper

Abstract

The evolution of the particle size distribution and the surface composition of silicon carbide and titanium carbide nanoparticle (NP) dispersions were studied. The pre-dispersions were prepared using two commonly used protocols for dispersion: stirring and sonication. Two dispersants were investigated (water and Pluronic F108 1 %) at two stages: pre-dispersion and during in vitro assays. Our data show that for each tested condition, different time-dependent results for the surface chemical composition as well as size and percentage of the agglomerates and the primary particles are observed. De-agglomeration and successive or simultaneous cleaning-wrapping cycles of the nanomaterial are observed and are related to the dispersion method and the medium as well as to the chemical stability of the NP surface. Biological response during in vitro assessment was also performed for one given pre-dispersion time condition and demonstrates that the preparation method significantly alters the results.

Keywords

SiC nanoparticles TiC nanoparticles Particle size distribution Surface composition Protocol of dispersion In vitro assays Effective dose Environmental and health effects 

Notes

Acknowledgments

This work is supported by the “Direction Générale des Technologies de la Recherche et de l’Energie” (DGTRE) of the Walloon Region of Belgium (Nanotoxico Project, RW/FUNDP research convention No. 516252). O. Toussaint is a Research Associate of the Belgian FRS/FNRS. The authors acknowledge financial support from the European Union under the Framework 6 program under a contract for the Integrated Infrastructure Initiative. Reference 026019 ESTEEM and Framework 7 program, Qnano (INFRASTRUCTURE-2010-1-262163).

Supplementary material

11051_2012_815_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2441 kb)

References

  1. Bae S-T, Shin H, Jung HS, Hong KS (2009) Synthesis of titanium carbide nanoparticles with a high specific surface area from a TiO2 core–sucrose shell precursor. J Am Ceram Soc 92(11):2512–2516CrossRefGoogle Scholar
  2. Barillet S, Jugan ML, Laye M, Leconte Y, Herlin-Boime N, Reynaud C, Carrière M (2010) In vitro evaluation of SiC nanoparticles impact on A549 pulmonary cells: Cyto-, genotoxicity and oxidative stress. Toxicol Lett 198(3):324–330CrossRefGoogle Scholar
  3. Bihari P, Vippola M, Schultes S, Praetner M, Khandoga A, Reichel C, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5(1):14CrossRefGoogle Scholar
  4. Borm P, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(1):11CrossRefGoogle Scholar
  5. Che J, Wang X, Xiao Y, Wu X, Zhou L, Yuan W (2007) Effect of inorganic–organic composite coating on the dispersion of silicon carbide nanoparticles in non-aqueous medium. Nanotechnology 18(13):135706CrossRefGoogle Scholar
  6. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126(48):15638–15639CrossRefGoogle Scholar
  7. Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 103(50):18882–18886. doi: 10.1073/pnas.0609265103 CrossRefGoogle Scholar
  8. Corey JM, Gertz CC, Sutton TJ, Chen Q, Mycek KB, Wang BS, Martin AA, Johnson SL, Feldman EL (2009) Patterning N-type and S-type neuroblastoma cells with Pluronic F108 and ECM proteins. J Biomed Mater Res A 93(2):673–686Google Scholar
  9. Dickson MA, Hahn WC, Ino Y, Ronfard V, Wu JY, Weinberg RA, Louis DN, Li FP, Rheinwald JG (2000) Human keratinocytes that express hTERT and also bypass a p16INK4a-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20(4):1436–1447. doi: 10.1128/mcb.20.4.1436-1447.2000 CrossRefGoogle Scholar
  10. Foucaud L, Wilson MR, Brown DM, Stone V (2007) Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett 174:1–9CrossRefGoogle Scholar
  11. Fubini B, Ghiazza M, Fenoglio I (2010) Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology 4(4):347–363CrossRefGoogle Scholar
  12. Fukushima M, Zhou Y, Yoshizawa Y-I (2008) Fabrication and microstructural characterization of porous silicon carbide with nano-sized powders. Mater Sci Eng B 148(1–3):211–214CrossRefGoogle Scholar
  13. Guevara-Lora I, Czosnek C, Smycz A, Janik J, Kozik A (2009) SiC nanoparticles as potential carriers for biologically active substances. J Phys Conf Ser 146(1):012022CrossRefGoogle Scholar
  14. Hassan M, Rawat RS, Lee P, Hassan SM, Qayyum A, Ahmad R, Murtaza G, Zakaullah M (2008) Synthesis of nanocrystalline multiphase titanium oxycarbide (TiCxOy) thin films by UNU/ICTP and NX2 plasma focus devices. Appl Phys A 90(4):669–677CrossRefGoogle Scholar
  15. Hoet P, Bruske-Hohlfeld I, Salata O (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2(1):12CrossRefGoogle Scholar
  16. Iijima M, Kamiya H (2008) Surface modification of silicon carbide nanoparticles by azo radical initiators. J Phys Chem C 112(31):11786–11790CrossRefGoogle Scholar
  17. Iolitec (2007a) Silicon(IV)carbide—technical data sheet. http://www.nanomaterials.iolitec.de/en/Nanomaterials/carbide.html. Retrieved 2012-03-19
  18. Iolitec (2007b) Titanium(IV)carbide powder—technical data sheet. http://www.nanomaterials.iolitec.de/en/Nanomaterials/carbide.html. Retrieved 2012-03-19
  19. Karakoti A, Hench L, Seal S (2006) The potential toxicity of nanomaterials—the role of surfaces. J Manag 58(7):77–82Google Scholar
  20. Lee K-H, Lee S-K, Jeon K-S (2009) Photoluminescent properties of silicon carbide and porous silicon carbide after annealing. Appl Surf Sci 255(8):4414–4420CrossRefGoogle Scholar
  21. Lin H, Gerbec JA, Sushchikh M, McFarland EW (2008) Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor. Nanotechnology 19(32):325601CrossRefGoogle Scholar
  22. Lison D, Thomassen LCJ, Rabolli V, Gonzalez L, Napierska D, Seo JW, Kirsch-Volders M, Hoet P, Kirschhock CEA, Martens JA (2008) Nominal and effective dosimetry of silica nanoparticles in cytotoxicity assays. Toxicol Sci 104(1):155–162. doi: 10.1093/toxsci/kfn072 CrossRefGoogle Scholar
  23. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci 105(38):14265–14270. doi: 10.1073/pnas.0805135105 CrossRefGoogle Scholar
  24. Meißner T, Kühnel D, Busch W, Oswald S, Richter V, Michaelis A, Schirmer K, Potthoff A (2010) Physical–chemical characterization of tungsten carbide nanoparticles as a basis for toxicological investigations. Nanotoxicology 4(2):196–206. doi: 10.3109/17435391003605455 CrossRefGoogle Scholar
  25. Mejia J, Tichelaar F, Saout C, Toussaint O, Bernard M, Mekhalif Z, Lucas S, Delhalle J (2011) Effects of the dispersion methods in Pluronic F108 on the size and the surface composition of MWCNTs and their implications in toxicology assessment. J Nanopart Res 13:655–667. doi: 10.1007/s11051-010-0063-7 CrossRefGoogle Scholar
  26. Merkus HG (2009) Particle size measurements—fundamentals, practice, quality. Particle technology series, vol 17. Springer, Dordrecht, pp 329–334. doi:978-1-4020-9016-5
  27. Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli Bombelli F, Dawson KA (2011) Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc 133(8):2525–2534CrossRefGoogle Scholar
  28. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi: 10.1126/science.1114397 CrossRefGoogle Scholar
  29. Novak S, Kovac J, Drazic G, Ferreira JMF, Quaresma S (2007) Surface characterisation and modification of submicron and nanosized silicon carbide powders. J Eur Ceram Soc 27(12):3545–3550CrossRefGoogle Scholar
  30. Piret JP, Detriche S, Vigneron R, Vankoningsloo S, Rolin S, Mejia Mendoza J, Masereel B, Lucas S, Delhalle J, Luizi F, Saout C, Toussaint O (2010) Dispersion of multi-walled carbon nanotubes in biocompatible dispersants. J Nanopart Res 12(1):75–82CrossRefGoogle Scholar
  31. Raman V, Abbas A (2008) Experimental investigations on ultrasound mediated particle breakage. Ultrason Sonochem 15(1):55–64CrossRefGoogle Scholar
  32. Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1:118–129CrossRefGoogle Scholar
  33. Shimoda K, Park J-S, Hinoki T, Kohyama A (2007) Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics. Appl Surf Sci 253(24):9450–9456CrossRefGoogle Scholar
  34. Singh B, Jena J, Besra L, Bhattacharjee S (2007) Dispersion of nano-silicon carbide (SiC) powder in aqueous suspensions. J Nanopart Res 9(5):797–806CrossRefGoogle Scholar
  35. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29(1):295CrossRefGoogle Scholar
  36. Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara WB, Mdleleni MM, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc Lond A 357(1751):335–353. doi: 10.1098/rsta.1999.0330 CrossRefGoogle Scholar
  37. Tartaj P, Reece M, Moya JS (1998) Electrokinetic behavior and stability of silicon carbide nanoparticulate dispersions. J Am Ceram Soc 81(2):389–394CrossRefGoogle Scholar
  38. Taurozzi JS, Hackley VA, Wiesner MR (2011) Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment—issues and recommendations. Nanotoxicology 5(4):711–729. doi: 10.3109/17435390.2010.528846 CrossRefGoogle Scholar
  39. Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicology assessments. Toxicol Sci 97(2):614. doi: 10.1093/toxsci/kfm097 CrossRefGoogle Scholar
  40. Vankoningsloo S, Piret J-P, Saout C, Noel F, Mejia J, Zouboulis CC, Delhalle J, Lucas S, Toussaint O (2010) Cytotoxicity of multi-walled carbon nanotubes in three skin cellular models: effects of sonication, dispersive agents and corneous layer of reconstructed epidermis. Nanotoxicology 4(1):84–97. doi: 10.3109/17435390903428869 CrossRefGoogle Scholar
  41. Vauthier C, Cabane B, Labarre D (2008) How to concentrate nanoparticles and avoid aggregation? Eur J Pharm Biopharm 69(2):466–475CrossRefGoogle Scholar
  42. Yates PD, Franks GV, Jameson GJ (2008) Orthokinetic heteroaggregation with nanoparticles: effect of particle size ratio on aggregate properties. Colloid Surf A 326(1–2):83–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jorge Mejia
    • 1
    Email author
  • Vanessa Valembois
    • 1
  • Jean-Pascal Piret
    • 2
  • Frans Tichelaar
    • 3
  • Marijn van Huis
    • 3
  • Bernard Masereel
    • 4
  • Olivier Toussaint
    • 2
  • Joseph Delhalle
    • 5
  • Zineb Mekhalif
    • 5
  • Stéphane Lucas
    • 1
  1. 1.Research Centre for the Physics of Matter and Radiation (LARN-PMR), NARILISUniversity of Namur-FUNDPNamurBelgium
  2. 2.Research Unit in Cellular Biology (URBC), NARILISUniversity of Namur-FUNDPNamurBelgium
  3. 3.National Centre for HRTEM, Kavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
  4. 4.Department of Pharmacy NAMEDIC, Namur Thrombosis and Hemostasis Center (NTHC)University of Namur-FUNDPNamurBelgium
  5. 5.Laboratory of Chemistry and Electrochemistry of Surfaces—CESUniversity of Namur-FUNDPNamurBelgium

Personalised recommendations