Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

  • Karolina Siskova
  • Jiri Tucek
  • Libor Machala
  • Eva Otyepkova
  • Jan Filip
  • Klara Safarova
  • Jiri Pechousek
  • Radek Zboril
Research Paper


We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic–organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic–organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.


Iron Nanoparticles TCE decomposition Moessbauer spectroscopy Magnetism 



Dr. Dalibor Jančík is thanked for the analysis of SAED data, Bc. Jan Kolařík for AAS measurements, and Dr. Giorgio Zoppellaro for his valuable comments and encouragement. Financial support by P108/11/P657 Grant awarded by GACR, the project of the Ministry of Industry and Business of the Czech Republic (project ID: FR-TI3/196), the Operational Program Research and Development for Innovations - European Regional Development Fund (project CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic), the projects of the Ministry of Education of the Czech Republic (1M6198959201 and MSM6198959218), and the project of the Academy of Sciences of the Czech Republic (KAN115600801) is gratefully acknowledged.

Supplementary material

11051_2012_805_MOESM1_ESM.pdf (149 kb)
Supplementary material 1 (PDF 150 kb)


  1. Carpenter EE, Calvin S, Stroud RM, Harris VG (2003) Passivated iron as core-shell nanoparticles. Chem Mater 15:3245–3246CrossRefGoogle Scholar
  2. Comba S, Sethi R (2009) Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum. Water Res 43:3717–3726CrossRefGoogle Scholar
  3. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrence and uses, 2nd edn. Wiley-VCH Publishers, WeinheimGoogle Scholar
  4. Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. In: Prigogine I, Rice SA (eds) Adv Chem Phys, vol 98. Wiley, New York, pp 283–494CrossRefGoogle Scholar
  5. Durmus Z, Kavas H, Toprak MS, Baykal A, Altincekic TG, Aslan A, Bozkurt A, Cosgun S (2009) l-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J Alloys Compd 484:371–376CrossRefGoogle Scholar
  6. Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M (2007) Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol 41:4367–4374CrossRefGoogle Scholar
  7. Geng G, Jin Z, Li T, Qi X (2009a) Preparation of chitosan-stabilized Fe0 nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407:4994–5000CrossRefGoogle Scholar
  8. Geng B, Jin Z, Li T, Qi X (2009b) Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles. Chemosphere 75:825–830CrossRefGoogle Scholar
  9. Ghauch A, Tuqan A, Assi HA (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635CrossRefGoogle Scholar
  10. Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1995) Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34:28–35CrossRefGoogle Scholar
  11. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221CrossRefGoogle Scholar
  12. Hoag GE, Collins JB, Holcomb JL, Hoag JR, Nadagouda MN, Varma RS (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677CrossRefGoogle Scholar
  13. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298CrossRefGoogle Scholar
  14. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050CrossRefGoogle Scholar
  15. Karabelli D, Uzum C, Shahwan T, Eroglu AE, Scott TB, Hallam KR, Lieberwirth I (2008) Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake. Ind Eng Chem Res 47:4758–4764CrossRefGoogle Scholar
  16. Katsenovich YP, Miralles-Wilhelm FR (2009) Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils. Sci Total Environ 407:4986–4993CrossRefGoogle Scholar
  17. Kim HJ, Phenrat T, Tilton RD, Lowry GV (2009) Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol 43:3824–3830CrossRefGoogle Scholar
  18. Kim HS, Ahn JY, Hwang KY, Kim IK, Hwang I (2010) Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: characteristics and reactivity. Environ Sci Technol 44:1760–1766CrossRefGoogle Scholar
  19. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111:6939–6946CrossRefGoogle Scholar
  20. Li L, Fan M, Brown RC, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang P (2006) Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Environ Sci Technol 36:405–431CrossRefGoogle Scholar
  21. Liang F, Fan J, Guo Y, Fan M, Wang J, Yang H (2008) Reduction of nitrite by ultrasound-dispersed nanoscale zero-valent iron particles. Ind Eng Chem Res 47:8550–8554CrossRefGoogle Scholar
  22. Lien HL, Zhang W (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloid Surf A 191:97–105CrossRefGoogle Scholar
  23. Liou YH, Lo SL, Kuan WH, Lin CJ, Weng SC (2006) Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Res 40:2485–2492CrossRefGoogle Scholar
  24. Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39:1338–1345CrossRefGoogle Scholar
  25. Machala L, Zboril R, Gedanken A (2007) Amorphous iron(III) oxide: a review. J Phys Chem B 111:4003–4018CrossRefGoogle Scholar
  26. Mantion A, Gozzo F, Schmitt B, Stern WB, Gerber Y, Robin AY, Fromm KM, Painsi M, Taubert A (2008) Amino acids in iron oxide mineralization: (incomplete) crystal phase selection is achieved even with single amino acids. J Phys Chem C 112:12104–12110CrossRefGoogle Scholar
  27. Marinescu G, Patron L, Culita DC, Neagoe C, Lepadatu CI, Balint I, Bessais L, Cizmas CB (2006) Synthesis of magnetite nanoparticles in the presence of aminoacids. J Nanopart Res 8:1045–1051CrossRefGoogle Scholar
  28. Martin JE, Herzing AA, Yan W, Li XQ, Koel BE, Kiely C, Zhang WX (2008) Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir 24:4329–4334CrossRefGoogle Scholar
  29. Nakamoto K (2009a) Infrared and Raman spectra of inorganic and coordination compounds, Part A: Theory and applications in inorganic chemistry. Wiley Inc., Hoboken, pp 82–84, 254–258Google Scholar
  30. Nakamoto K (2009b) Infrared and Raman spectra of inorganic and coordination compounds, Part B: Applications in coordination, organometallic, and bioinorganic chemistry. Wiley Inc., Hoboken, pp 12–21, 58, 62, 69, 177Google Scholar
  31. Nurmi JT, Sarathy V, Tratnyek PG, Baer DR, Amonette JE, Karkamkar A (2011) Recovery of iron/iron oxide nanoparticles from solution: comparison of methods and their effects. J Nanopart Res 13:1937–1952CrossRefGoogle Scholar
  32. Papefthymiou GC (2009) Nanoparticle magnetism. NanoToday 4:438–447Google Scholar
  33. Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation («aging») and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRefGoogle Scholar
  34. Ponder SM, Darab JG, Bucher J, Caulder D, Craig I, Davis L, Edelstein N, Lukens W, Nitsche H, Rao L, Shuh DH, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486CrossRefGoogle Scholar
  35. Ramos MAV, Yan W, Li XQ, Koel BE, Zhang WX (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J Phys Chem C 113:14591–14594CrossRefGoogle Scholar
  36. Saleh N, Phenrat T, Sirk K, Dufour B, Ok J, Sarbu T, Mayjaszewski K, Tilton RD, Lowry GV (2005) Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Lett 5:2489–2494CrossRefGoogle Scholar
  37. Schneeweiss O, Zboril R, Mashlan M, Petrovsky E, Tucek J (2006) Novel solid-state synthesis of α-Fe and Fe3O4 nanoparticles embedded in a MgO matrix. Nanotechnology 17:607–616CrossRefGoogle Scholar
  38. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRefGoogle Scholar
  39. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193CrossRefGoogle Scholar
  40. Slunsky J (2010) Production and application of nanoscale zero-valent iron (nZVI) for groundwater remediation and other utilization. VEGAS-Kolloquium:101–105Google Scholar
  41. Sohn K, Kang SW, Ahn S, Woo M, Yang SK (2006) Fe(0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ Sci Technol 440:5514–5519CrossRefGoogle Scholar
  42. Sousa MH, Tourinho FA, Rubim JC (2000) Use of Raman micro-spectroscopy in the characterization of MIIFe2O4 (M = Fe, Zn) electric double layer ferrofluids. J Raman Spectrosc 31:185–191CrossRefGoogle Scholar
  43. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56CrossRefGoogle Scholar
  44. Sun YP, Li XQ, Zhang WX, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf A 308:60–66CrossRefGoogle Scholar
  45. Tiehm A, Krassnitzer S, Koltypin Y, Gedanken A (2009) Chloroethene dehalogenation with ultrasonically produced air-stable nano iron. Ultrason Sonochem 16:617–621CrossRefGoogle Scholar
  46. Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324:71–79CrossRefGoogle Scholar
  47. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. NanoToday 1:44–48Google Scholar
  48. Wang Z, Zhu H, Wang X, Yang F, Yang X (2009) One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. Nanotechnology 20(46): 465606 (10 pp). doi:  10.1088/0957-4484/20/46/465606 Google Scholar
  49. Wang Q, Lee S, Choi H (2010a) Aging study on the structure of Fe0-nanoparticles: stabilization, characterization, and reactivity. J Phys Chem C 114:2027–2033CrossRefGoogle Scholar
  50. Wang W, Thou M, Jin Z, Li T (2010b) Reactivity characteristics of poly(methyl methacrylate) coated nanoscale iron particles for trichloroethylene remediation. J Hazard Mater 173:724–730CrossRefGoogle Scholar
  51. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  52. Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. NanoToday 5:128–142Google Scholar
  53. Zhang X, Deng B, Guo J, Wang Y, Lan Y (2011) Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. J Environ Manag 92:1328–1333CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Karolina Siskova
    • 1
  • Jiri Tucek
    • 1
  • Libor Machala
    • 1
  • Eva Otyepkova
    • 2
  • Jan Filip
    • 1
  • Klara Safarova
    • 1
  • Jiri Pechousek
    • 1
  • Radek Zboril
    • 1
  1. 1.Regional Centre of Advanced Technologies and Materials, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Department of Physical Chemistry, Faculty of SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations