Raman study of cations’ distribution in Zn x Mg1−x Fe2O4 nanoparticles

  • S. W. da Silva
  • F. Nakagomi
  • M. S. Silva
  • A. FrancoJr
  • V. K. Garg
  • A. C. Oliveira
  • P. C. Morais
Research Paper

Abstract

In a complementary way, Raman and Mössbauer spectroscopy were successfully employed to assess the cations’ distribution among the tetrahedral (A-site) and octahedral (B-site) sites of nonosized Zn x Mg1−x Fe2O4 (0 ≤ x ≤ 1) cubic ferrite structure, synthesized by combustion reaction method. Nanoparticles with little change in size distributions, in the 40 nm (x = 0.0) up to 42 nm (x = 1.0) were obtained. Mössbauer data indicated that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the Fe3+ ion monotonically increases (decreases) the A-site (B-site) occupancy up to nearly equal values at the highest end x value. Analysis of the Raman data, however, confirms that the three highest energy modes around 650, 668 and 710 cm−1 are assigned to Zn–O (B-site), Fe–O (A-site) and Mg–O (A-site) vibrations, respectively. Additionally, in agreement with the Mössbauer data, the Raman data show that as the Zn-content (x) increases in the range 0 ≤ x ≤ 1, the occupancy of A-sites by Mg2+ ions monotonically reduces with concomitant increase of A- and B-sites occupancy by Fe3+ and Zn2+ ions, respectively. Indeed, combination of the two sets of spectroscopic data (Raman and Mössbauer) provides an effective protocol for assessing the cations’ distribution within the crystal structure of nanosized quaternary cubic ferrite samples running for instance from \( \left[ {{\text{Fe}}_{0.42}^{3 + } {\text{Mg}}_{0.58}^{2 + } } \right]^{A} \left[ {{\text{Zn}}_{0.20}^{2 + } {\text{Mg}}_{0.22}^{2 + } {\text{Fe}}_{1.58}^{3 + } } \right]^{B} O_{4}^{2 - } \) at x = 0.2 up to \( \left[ {{\text{Fe}}_{1.0}^{3 + } } \right]^{A} \left[ {{\text{Zn}}_{0.60}^{2 + } {\text{Mg}}_{0.40}^{2 + } {\text{Fe}}_{1.0}^{3 + } } \right]^{B} {\text{O}}_{4}^{2 - } \) at x = 0.6.

Keywords

Raman spectroscopy Cubic ferrite Magnetic nanoparticles Cation’ distribution Mössbauer spectroscopy 

Notes

Acknowledgments

The authors acknowledge the financial support from the Brazilian agencies CNPq, CAPES, and FINEP.

References

  1. Antic B, Jovic N, Pavlovic MB, Kremenovic A, Manojlovic D, Vucinic-Vasic M, Nikolic AS (2010) Magnetization enhancement in nanostructured random type MgFe(2)O(4) spinel prepared by soft mechanochemical route. J Appl Phys 107:043525. doi: 10.1063/1.3319563 CrossRefGoogle Scholar
  2. Braestrup F, Hauback BC, Hansen KK (2008) Temperature dependence of the cation distribution in ZnFe2O4 measured with high temperature neutron diffraction. J Solid State Chem 181:2364–2369. doi: 10.1016/j.jssc.2008.05.028 CrossRefGoogle Scholar
  3. Choi EJ, Ahn Y, Song KC (2006) Mossbauer study in zinc ferrite nanoparticles. J Magn Magn Mater 301:171–174. doi: 10.1016/j.jmmm.2005.06.016 CrossRefGoogle Scholar
  4. da Silva SW, Nakagomi F, Silva MS, Franco A, Garg VK, Oliveira AC, Morais PC, Lima ECD (2010) Effect of the Zn content in the structural and magnetic properties of ZnxMg1 − xFe2O4 mixed ferrites monitored by Raman and Mössbauer spectroscopies. J Appl Phys 107:09B503. doi: 10.1063/1.3350903 CrossRefGoogle Scholar
  5. Degiorgi l, Blattermorke I, Wachter P (1987) Magnetite–phonon modes and the Verwey transition. Phys Rev B 35:5421–5424. doi: 10.1103/PhysRevB.35.5421 CrossRefGoogle Scholar
  6. Denton AR, Ashcroft NW (1991) Vegard law. Phys Rev A 43:3161–3164. doi: 10.1103/PhysRevA.43.3161 CrossRefGoogle Scholar
  7. Franco A, Lima ECD, Novak MA, Wells PR (2007) Synthesis of nanoparticles of CoxFe(3−x)O4 by combustion reaction method. J Magn Magn Mater 308:198–202. doi: 10.1016/j.jmmm.2006.05.022 CrossRefGoogle Scholar
  8. Graves PR, Johnston C, Campaniello JJ (1988) Raman-scattering in spinel structure ferrites. Mater Res Bull 23:1651–1660. doi: 10.1016/0025-5408(88)90255-3 CrossRefGoogle Scholar
  9. Gul IH, Abbasi AZ, Amin F, Anis-ur-Rehman M, Maqsood A (2007) Structural, magnetic and electrical properties of Co1−xZnxFe2O4 synthesized by co-precipitation method. J Magn Magn Mater 311:494–499. doi: 10.1016/j.jmmm.2006.08.005 Google Scholar
  10. Gupta R, Sood AK, Metcalf P, Honig JM (2002) Raman study of stoichiometric and Zn-doped Fe3O4. Phys Rev B 65:104430. doi: 10.1103/PhysRevB.65.104430 CrossRefGoogle Scholar
  11. Hamedoun M, Benyoussef A, Bousmina M (2010) Magnetic properties and phase diagram of Zn(x)Ni(1−x)Fe(2)O(4): high-temperature series expansions. J Magn Magn Mater 322:3227–3235. doi: 10.1016/j.jmmm.2010.05.030 CrossRefGoogle Scholar
  12. Kreisel J, Lucazeau G, Vincent H (1998) Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferrite. J Solid State Chem 137:127–137. doi: 10.1006/jssc.1997.7737 CrossRefGoogle Scholar
  13. Makovec D, Kodre A, Arcon I, Drofenik M (2011) The structure of compositionally, constrained zinc-ferrite. J Nanopart Res 13:1781–1790. doi: 10.1007/s11051-010-9929-y CrossRefGoogle Scholar
  14. Maletin M, Moshopoulou EG, Kontos AG, Devlin E, Delimitis A, Zaspalis V, Nalbandian L, Srdic VV (2007) Synthesis and structural characterization of In-doped ZnFe2O4 nanoparticles. J Eur Ceram Soc 27:4391–4394. doi: 10.1016/j.jeurceramsoc.2007.02.165 CrossRefGoogle Scholar
  15. McCurrie RA (1994) Ferromagnetic materials–structure and properties. Academic Press Inc, New YorkGoogle Scholar
  16. Nakagomi F, da Silva SW, Garg VK, Oliveira AC, Morais PC, Franco A (2009) Influence of the Mg-content on the cation distribution in cubic MgxFe(3−x)O(4) nanoparticles. J Solid State Chem 182:2423–2429. doi: 10.1016/j.jssc.2009.06.036 CrossRefGoogle Scholar
  17. O′Neill HS (1992) Temperature dependence of the cation distribution in zinc ferrite (ZnFe2O4) from powder XRD structural refinements. Eur J Minerol 4:571–580Google Scholar
  18. Oliver SA, Harris VG, Hamdeh HH, Ho JC (2000) Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl Phys Lett 76:2761–2763. doi: 10.1063/1.126467 CrossRefGoogle Scholar
  19. Pusep YA, da Silva SW, Galzerani JC, Milekhin AG, Preobrazhenskii VV, Semyagin BR, Marahovka II (1995) Spectroscopy of the optical vibrational-modes in GaAs/AlxGa1−xAs heterostructures with monolayer-wide AlxGa1−xAs barriers. Phys Rev B 52:610–2618. doi: 10.1103/PhysRevB.52.261 CrossRefGoogle Scholar
  20. Rath C, Sahu KK, Anand S, Date SK, Mishra NC, Das RP (1999) Preparation and characterization of nanosize Mn–Zn ferrite. J Magn Magn Mater 202:77–84. doi: 10.1016/S0304-8853(99)00217-6 CrossRefGoogle Scholar
  21. Seong MJ, Hanna MC, Mascarenhas A (2001) Composition dependence of Raman intensity of the nitrogen localized vibrational mode in GaAs1 − xNx. Appl Phys Lett 79:3974–3976. doi: 10.1063/1.1424469 CrossRefGoogle Scholar
  22. Sepelak V, Feldhoff A, Heitjans P, Krumeich F, Menzel D, Litterst FJ, Bergmann I, Becker KD (2006) Nonequilibrium cation distribution, canted spin arrangement, and enhanced magnetization in nanosized MgFe2O4 prepared by a one-step mechanochemical route. Chem Mater 18:3057–3067. doi: 10.1021/cm0514894 CrossRefGoogle Scholar
  23. Shebanova ON, Lazor P (2003) Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. J Solid State Chem 174:424–430. doi: 10.1016/S0022-4596(03)00294-9 CrossRefGoogle Scholar
  24. Soler MAG, Lima ECD, da Silva SW, Melo TFO, Pimenta ACM, Sinnecker JP, Azevedo RB, Garg VK, Oliveira AC, Novak MA, Morais PC (2007) Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid. Langmuir 23:9611–9617. doi: 10.1021/la701358g CrossRefGoogle Scholar
  25. Srivastava CM, Shringi SN, Srivastava RG (1976) Mossbauer study of relaxation phenomena in zinc–ferrous ferrites. Phys Rev B 14:2041–2050. doi: 10.1103/PhysRevB.14.2041 CrossRefGoogle Scholar
  26. Upadhyay C, Verma HC, Anand S (2004) Cation distribution in nanosized Ni–Zn ferrites. J Appl Phys 95:5746–5751. doi: 10.1063/1.1699501 CrossRefGoogle Scholar
  27. Verble JL (1974) Temperature-dependent light-scattering studies of Verwey transition and electronic disorder in magnetite. Phys Rev B 9:5236–5248. doi: 10.1103/PhysRevB.9.5236 CrossRefGoogle Scholar
  28. Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735. doi: 10.1103/PhysRev.99.1727 CrossRefGoogle Scholar
  29. Wang ZW, Lazor P, Saxena SK, O’Neill HS (2002) High pressure Raman spectroscopy of ferrite MgFe2O4. Mater Res Bull 37:1589–1602CrossRefGoogle Scholar
  30. Wang ZW, Schiferl D, Zhao YS, O’Neill HSC (2003) High pressure Raman spectroscopy of spinel-type ferrite ZnFe2O4. J Phys Chem Solids 64:2517–2523. doi: 10.1016/j.jpcs.2003.08.005 CrossRefGoogle Scholar
  31. White WB, DeAngeli BA (1967) Interpretation of vibrational spectra of spinels. Spectrochim Acta 23A:985–995. doi: 10.1016/0584-8539(67)80023-0 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • S. W. da Silva
    • 1
  • F. Nakagomi
    • 1
  • M. S. Silva
    • 2
  • A. FrancoJr
    • 2
  • V. K. Garg
    • 1
  • A. C. Oliveira
    • 1
  • P. C. Morais
    • 1
  1. 1.Instituto de FísicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de FísicaUniversidade Federal de GoiásGoiâniaBrazil

Personalised recommendations