Advertisement

Evaluation of genotoxic effect of silver nanoparticles (Ag-Nps) in vitro and in vivo

  • Priscila Tavares
  • Fernanda Balbinot
  • Hugo Martins de Oliveira
  • Gabriela Elibio Fagundes
  • Mireli Venâncio
  • João Vitor Vieira Ronconi
  • Aline Merlini
  • Emílio L. Streck
  • Marcos Marques da Silva Paula
  • Vanessa Moraes de AndradeEmail author
Research Paper

Abstract

Silver nanoparticles (Ag-NPs) are the most prominent nanoproducts. Due to their antimicrobial activity, they have been incorporated in different materials, such as catheters, clothes, electric home appliance, and many others. The genotoxicity of Ag-NPs (5–45 nm), in different concentrations and times of exposure, was evaluated by the comet assay in in vitro and in vivo conditions, respectively, using human peripheral blood and Swiss mice. The results showed the genotoxic effect of Ag-NPs in vitro, in all the doses tested in the initial hour of exposure, possibly through the reactive oxygen species generation. Nevertheless, the values for this damage decrease with time, indicating that the DNA may have been restored by the repair system. In the in vivo conditions, we found no genotoxicity of Ag-NPs in any hour of exposure and any dose investigated, which can be attributed to the activation of a cellular antioxidant network and the hydrophobic nature of Ag-NPs. Now, it is absolutely necessary to investigate the role of Ag-NPs in different cell lines in vivo.

Keywords

Genotoxic Silver nanoparticles (Ag-Nps) In vitro and in vivo Environmental and health effects 

References

  1. Ahamed M, Karns M, Goodson M et al (2008) DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 233:404–410CrossRefGoogle Scholar
  2. Alt V, Bechert T, Steinrucke P et al (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25:4383–4391CrossRefGoogle Scholar
  3. Arora S, Jain J, Rajwade JM, Paknikar KM (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179:93–100CrossRefGoogle Scholar
  4. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefGoogle Scholar
  5. Barnes C, Elsaesser A, Arkusz J et al (2008) Reproducible comet assay of amorphous silica nanoparticles detects no genotoxicity. Nano Lett 8:3069–3074CrossRefGoogle Scholar
  6. Cadet J, Delatour T, Douki T et al (1999) Hydroxyl radicals and DNA base damage. Mutat Res 429:9–21Google Scholar
  7. Chavany C, Saison-Behmoaras T, Le DT, Puisieux F, Couvreur P, Helene C (1994) Adsorption of oligonucleotides onto polyisohexylcyanoacrylate nanoparticles protect them against nucleases and increase their cellular uptake. Pharmacol Res 11:1370–1378CrossRefGoogle Scholar
  8. Chen X, Schluesener HJ (2008) Nanosilver: a nanoproduct in medical application. Toxicol Lett 176:1–12CrossRefGoogle Scholar
  9. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261CrossRefGoogle Scholar
  10. Collins A, Dusinska M, Franklin M et al (1997) Comet assay in human biomonitoring studies: reliability, validation, and applications. Environ Mol Mutagen 30:139–146CrossRefGoogle Scholar
  11. De M, You CC, Srivastava S, Rotello VM (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129:10747–10753CrossRefGoogle Scholar
  12. Foldbjerg R, Dang DA, Autrup H (2010) Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol 185:743–750Google Scholar
  13. Greulich C, Kittler S, Muhr G, Koller M (2009) Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbecks Arch Surg 394(3):495–502CrossRefGoogle Scholar
  14. Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33CrossRefGoogle Scholar
  15. Huo Y, Li G, Duan RF, Gou Q, Fu CL, Hu YC (2008) PTEN deletion leads to deregulation of antioxidants and increased oxidative damage in mose embryonic fibroblasts. Free Radic Biol Med 44:1578–1591CrossRefGoogle Scholar
  16. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19:975–983CrossRefGoogle Scholar
  17. Jana NR, Gearheart L, Murphy C (2001) Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 7:617–618CrossRefGoogle Scholar
  18. Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Deliv Rev 47:83–97CrossRefGoogle Scholar
  19. Jong WHD, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149CrossRefGoogle Scholar
  20. Lundquivist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20:10639–10647CrossRefGoogle Scholar
  21. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318Google Scholar
  22. Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82Google Scholar
  23. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–883CrossRefGoogle Scholar
  24. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv 55:329–347CrossRefGoogle Scholar
  25. Paula MMS, Costa CS, Baldin MC et al (2009) In vitro effect of silver nanoparticles on creatine kinase activity. J Braz Chem Soc 20:1556–1557CrossRefGoogle Scholar
  26. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180CrossRefGoogle Scholar
  27. Tice RR, Agurell E, Anderson D et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  28. Villela IV, Oliveira IM, Silva J, Henriques JAP (2006) DNA damage and repair in haemolymph cells of golden mussel (Limnoperna fortunei) exposed to environmental contaminants. Mutat Res 605:78–86Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Priscila Tavares
    • 1
  • Fernanda Balbinot
    • 1
  • Hugo Martins de Oliveira
    • 1
  • Gabriela Elibio Fagundes
    • 1
  • Mireli Venâncio
    • 2
  • João Vitor Vieira Ronconi
    • 2
  • Aline Merlini
    • 2
  • Emílio L. Streck
    • 3
  • Marcos Marques da Silva Paula
    • 2
  • Vanessa Moraes de Andrade
    • 1
    Email author
  1. 1.Laboratório de Biologia Celular e MolecularPPGCS, Universidade do Extremo Sul CatarinenseCriciúmaBrazil
  2. 2.Laboratório de Síntese de Complexos MultifuncionaisUniversidade do Extremo Sul CatarinenseCriciúmaBrazil
  3. 3.Laboratório de Fisiopatologia ExperimentalPrograma de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul CatarinenseCriciúmaBrazil

Personalised recommendations