Morphology and bilayer integrity of small liposomes during aerosol generation by air-jet nebulisation

  • Saptarshi Chattopadhyay
  • Sheryl H. Ehrman
  • Jayesh Bellare
  • Chandra Venkataraman
Research Paper

Abstract

Small liposome suspensions (hydrodynamic diameter, 80–130 nm) were nebulised, and the resulting changes in morphology and bilayer integrity were found to be related to surface properties controlled by bilayer composition. Four separate liposome compositions (or liposome types) were investigated using three different phospholipids with unique properties. Morphological changes were studied using light scattering and imaging of liposomes before and after nebulisation, and structural integrity was investigated on the basis of the retention of an encapsulated dye (probe molecule). Nebulisation generated droplets contained liposomes. The liposome particles generated on droplet evaporation had a hollow structure as evidenced by electron imaging, indicating that the lipid bilayer does not collapse on evaporation. The particles of all compositions had mobility diameters between 50 and 90 nm, 1.4–1.6 times smaller than their diameters (hydrodynamic) measured before nebulisation, implying considerable volume shrinkage. Liposomes that had polymer-conjugated lipids covering their external surface underwent aggregation during nebulisation, evidenced by increased diameter after nebulisation. Incorporation of charged lipids reduced nebulisation-induced aggregation, but induced greater membrane rupture during aerosol generation, causing leakage of encapsulated probe molecules. Incorporation of both cholesterol and charged lipids prevented aggregation, but also preserved bilayer integrity, evidenced by the maximum retention of encapsulated dye observed in these conditions (>85%). The findings suggest that liposome bilayer composition can be manipulated to improve the efficiency of liposome aerosol delivery.

Keywords

Stability Aggregation Mobility diameter Rupture Dye retention Nanoparticles Lung drug delivery 

References

  1. Anabousi VS (2006) Liposomal drug carrier systems for inhalation treatment of lung cancer. der Universität des Saarlandes, SaarbrückenGoogle Scholar
  2. Behr J, Zimmermann G, Baumgartner R, Leuchte H, Neurohr C, Brand P, Herpich C, Sommerer K, Seitz J, Menges G, Tillmanns S, Keller M, Grp MLT (2009) Lung deposition of a liposomal cyclosporine A inhalation solution in patients after lung transplantation. J Aerosol Med Pulm Drug Deliv 22(2):121–129. doi:10.1089/jamp.2008.0714 CrossRefGoogle Scholar
  3. Bridges PA, Taylor KMG (1998) Nebulisers for the generation of liposomal aerosols. Int J Pharm 173(1–2):117–125CrossRefGoogle Scholar
  4. Cai Y, Montague DC, Mooiweer-Bryan W, Deshler T (2008) Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: laboratory and field studies. J Aerosol Sci 39(9):759–769. doi:10.1016/j.jaerosci.2008.04.007 CrossRefGoogle Scholar
  5. Csempesz F, Puskas I (2007) Influence of cyclodextrins on the physical stability of DPPC-liposomes. Colloids Surf B 58(2):218–224. doi:10.1016/j.colsurfb.2007.03.011 CrossRefGoogle Scholar
  6. Dailey LA, Schmehl T, Gessler T, Wittmar M, Grimminger F, Seeger W, Kissel T (2003) Nebulisation of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. J Control Release 86(1):131–144CrossRefGoogle Scholar
  7. Desai TR, Hancock REW, Finlay WH (2003) Delivery of liposomes in dry powder form: aerodynamic dispersion properties. Eur J Pharm Sci 20(4–5):459–467. doi:10.1016/j.ejps.2003.09.008 CrossRefGoogle Scholar
  8. Elhissi AMA, Faizi M, Naji WF, Gill HS, Taylor KMG (2007) Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures. Int J Pharm 334(1–2):62–70. doi:10.1016/j.ijpharm.2006.10.022 CrossRefGoogle Scholar
  9. Elhissi A, Gill H, Ahmed W, Taylor K (2011) Vibrating-mesh nebulisation of liposomes generated using an ethanol-based proliposome technology. J Liposome Res 21(2):173–180. doi:10.3109/08982104.2010.505574 CrossRefGoogle Scholar
  10. Epstein H, Afergan E, Moise T, Richter Y, Rudich Y, Golomb G (2006) Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: empirical and calculation methods. Biomaterials 27(4):651–659. doi:10.1016/j.biomaterials.2005.06.006 CrossRefGoogle Scholar
  11. Gaspar MM, Bakowsky U, Ehrhardt C (2008) Inhaled liposomes-current strategies and future challenges. J Biomed Nanotechnol 4(3):245–257. doi:10.1166/Jbn.2008.334 CrossRefGoogle Scholar
  12. Gaspar MM, Gobbo O, Ehrhardt C (2010) Generation of liposome aerosols with the Aeroneb Pro and the AeroProbe nebulizers. J Liposome Res 20(1):55–61. doi:10.3109/08982100903085150 CrossRefGoogle Scholar
  13. Gilbert BE, Six HR, Wilson SZ, Wyde PR, Knight V (1988) Small particle aerosols of enviroxime-containing liposomes. Antivir Res 9(6):355–365CrossRefGoogle Scholar
  14. Harishchandra RK, Saleem M, Galla HJ (2010) Nanoparticle interaction with model lung surfactant monolayers. J R Soc Interface 7:S15–S26. doi:10.1098/rsif.2009.0329.focus CrossRefGoogle Scholar
  15. Hashizaki K, Taguchi H, Sakai H, Abe V, Saito Y, Ogawa N (2006) Carboxyfluorescein leakage from poly(ethylene glycol)-grafted liposomes induced by the interaction with serum. Chem Pharm Bull 54(1):80–84CrossRefGoogle Scholar
  16. Huang YY, Wang CH (2006) Pulmonary delivery of insulin by liposomal carriers. J Control Release 113(1):9–14. doi:10.1016/j.jconrel.2006.03.014 CrossRefGoogle Scholar
  17. Ito T, Yamazaki M, Ohnishi S (1989) Osmoelastic coupling in biological structures—a comprehensive thermodynamic analysis of the osmotic response of phospholipid-vesicles and a reevaluation of the dehydration force theory. Biochemistry 28(13):5626–5630CrossRefGoogle Scholar
  18. Johnson DL, Carlson KD, Pearce TA, Esmen NA, Thomas BN (1999) Effects of nebulisation time and pressure on lipid microtubule suspension and aerosol. Aerosol Sci Technol 30(2):211–222CrossRefGoogle Scholar
  19. Kleemann E, Schmehl T, Gessler T, Bakowsky U, Kissel T, Seeger W (2007) Iloprost-containing liposomes for aerosol application in pulmonary arterial hypertension: formulation aspects and stability. Pharm Res 24(2):277–287. doi:10.1007/s11095-006-9141-z CrossRefGoogle Scholar
  20. Konduri KS, Nandedkar S, Duzgunes N, Suzara V, Artwohl J, Bunte R (2003) Efficacy of liposomal budesonide in experimental asthma. J Allergy Clin Immunol 111(2):321–327. doi:10.1067/Mai.2003.104 CrossRefGoogle Scholar
  21. Kuntsche J, Horst JC, Bunjes B (2011) Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm. doi:10.1016/j.ijpharm.2011.02.001 Google Scholar
  22. Lentz YK, Worden LR, Anchordoquy TJ, Lengsfeld CS (2005) Effect of jet nebulisation on DNA: identifying the dominant degradation mechanism and mitigation methods. J Aerosol Sci 36(8):973–990. doi:10.1016/j.jaerosci.2004.11.017 CrossRefGoogle Scholar
  23. Liang E, Hughes JA (1998) Membrane fusion and rupture in liposomes: effect of biodegradable pH-sensitive surfactants. J Membr Biol 166(1):37–49CrossRefGoogle Scholar
  24. Mady MM, Darwish MM, Khalil S, Khalil WM (2009) Biophysical studies on chitosan-coated liposomes. Eur Biophys J Biophys Lett 38(8):1127–1133. doi:10.1007/s00249-009-0524-z CrossRefGoogle Scholar
  25. Mansour HM, Rhee YS, Wu XA (2009) Nanomedicine in pulmonary delivery. Int J Nanomed 4:299–319CrossRefGoogle Scholar
  26. Meyuhas D, Nir S, Lichtenberg D (1996) Aggregation of phospholipid vesicles by water-soluble polymers. Biophys J 71(5):2602–2612CrossRefGoogle Scholar
  27. Nerbrink O, Dahlback M, Hansson HC (1994) Why do medical nebulizers differ in their output and particle-size characteristics. J Aerosol Med 7(3):259–276CrossRefGoogle Scholar
  28. Niven RW, Schreier H (1990) Nebulisation of liposomes.1. Effects of lipid-composition. Pharm Res 7(11):1127–1133CrossRefGoogle Scholar
  29. Niven RW, Speer M, Schreier H (1991) Nebulisation of liposomes.2. The effects of size and modeling of soute release profiles. Pharm Res 8(2):217–221CrossRefGoogle Scholar
  30. OCallaghanx Powai, Barry PW (1997) The science of nebulised drug delivery. Thorax 52:S31–S44CrossRefGoogle Scholar
  31. Porstendörfer J, Gebhart J, Röbig G (1977) Effect of evaporation on the size distribution of nebulized aerosols. J Aerosol Sci 8:371–380. doi:10.1016/0021-8502(77)90031-3 CrossRefGoogle Scholar
  32. Roullin VG, Courant T, Cadiou C, Delavoie F, Molinari M, Andry MC, Chuburu F (2009) Development and physicochemical characterization of copper complexes-loaded PLGA nanoparticles. Int J Pharm 379(2):226–234. doi:10.1016/j.ijpharm.2009.03.036 CrossRefGoogle Scholar
  33. Scherrer P, Wheeler JJ, Palmer L, Ossanlou M, MacLachlan I, Graham RW, Zhang YP, Hope MJ, Cullis PR (1999) Stabilized plasmid-lipid particles: construction and characterization. Gene Ther 6(2):271–281CrossRefGoogle Scholar
  34. Tilcock CPS, Fisher D (1982) The interaction of phospholipid-membranes with poly(ethylene glycol)—vesicle aggregation and lipid exchange. Biochim Biophys Acta 688(2):645–652CrossRefGoogle Scholar
  35. Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22(2):129–150CrossRefGoogle Scholar
  36. Volodkin D, Mohwald H, Voegel JC, Ball V (2007) Coating of negatively charged liposomes by polylysine: drug release study. J Control Release 117(1):111–120. doi:10.1016/j.jconrel.2006.10.021 CrossRefGoogle Scholar
  37. Yoshida A, Hashizaki K, Yamauchi H, Sakai H, Yokoyama S, Abe M (1999) Effect of lipid with covalently attached poly(ethylene glycol) on the surface properties of liposomal bilayer membranes. Langmuir 15(7):2333–2337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Saptarshi Chattopadhyay
    • 1
    • 2
  • Sheryl H. Ehrman
    • 3
  • Jayesh Bellare
    • 1
    • 2
  • Chandra Venkataraman
    • 1
    • 2
  1. 1.Department of Chemical EngineeringIndian Institute of Technology-BombayPowai, MumbaiIndia
  2. 2.Centre for Research in Nanotechnology and ScienceIndian Institute of Technology BombayMumbaiIndia
  3. 3.Department of Chemical and Biomolecular EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations