The processing of polyelectrolyte-covered magnetite nanoparticles in the form of nanostructured thin films

  • Valéria S. Marangoni
  • Marccus Victor A. Martins
  • José A. Souza
  • Osvaldo N. OliveiraJr.
  • Valtencir Zucolotto
  • Frank N. Crespilho
Research Paper


Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.


Magnetic nanoparticles Layer-by-layer assembly 



The financial support from FAPESP (Projects numbers: 2009/18618-5, 2009/15558-1 and 2011/01541-0), CAPES, CNPq (Projects numbers: 307436/2008-0 and 304255/2010-6), INEO, and Rede NanoBioMed-Brasil (CAPES) is acknowledged.


  1. Ai H, Jones SA, Lvov YM (2003) Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys 39(1):23–43. doi: 10.1385/cbb:39:1:23 CrossRefGoogle Scholar
  2. Albornoz C, Jacobo SE (2006) Preparation of a biocompatible magnetic film from an aqueous ferrofluid. J Magn Magn Mater 305(1):12–15. doi: 10.1016/j.jmmm.2005.11.021 CrossRefGoogle Scholar
  3. Basak S, Chen DR, Biswas P (2007) Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem Eng Sci 62(4):1263–1268. doi: 10.1016/j.ces.2006.11.029 CrossRefGoogle Scholar
  4. Ben Fredj H, Helali S, Esseghaier C, Vonna L, Vidal L, Abdelghani A (2008) Labeled magnetic nanoparticles assembly on polypyrrole film for biosensor applications. Talanta 75(3):740–747. doi: 10.1016/j.talanta.2007.12.034 CrossRefGoogle Scholar
  5. Berkowitz AE, Schuele WJ, Flanders PJ (1968) Influence of crystallite size on magnetic properties of acicular gamma-Fe2O3 particles. J Appl Phys 39(2P2):1261–1263. doi: 10.1063/1.1656256 CrossRefGoogle Scholar
  6. Boutry S, Laurent S, Vander Elst L, Muller RN (2006) Specific E-selectin targeting with a superparamagnetic MRI contrast agent. Contrast Media Mol Imaging 1(1):15–22. doi: 10.1002/cmmi.87 CrossRefGoogle Scholar
  7. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J Mater Process Technol 191(1–3):235–237. doi: 10.1016/j.jmatprotec.2007.03.011 CrossRefGoogle Scholar
  8. Correa-Duarte MA, Giersig M, Kotov NA, Liz-Marzan LM (1998) Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO(2) coating by microwave irradiation. Langmuir 14(22):6430–6435. doi: 10.1021/la9805342 CrossRefGoogle Scholar
  9. Dantas TLP, Mendonca VP, Jose HJ, Rodrigues AE, Moreira R (2006) Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon. Chem Eng J 118(1–2):77–82. doi: 10.1016/j.cej.2006.01.016 CrossRefGoogle Scholar
  10. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237. doi: 10.1126/science.277.5330.1232 CrossRefGoogle Scholar
  11. Dey S, Mohanta K, Pal AJ (2010) Magnetic-field-assisted layer-by-layer electrostatic assembly of ferromagnetic nanoparticles. Langmuir 26(12):9627–9631. doi: 10.1021/la101132z CrossRefGoogle Scholar
  12. Gregoriou VG, Hapanowicz R, Clark SL, Hammond PT (1997) Infrared studies of novel optically responsive materials: orientation characteristics of sulfonated polystyrene/poly(diallyldimethylammonium chloride) ionic polymer multilayers on patterned self-assembled monolayers. Appl Spectrosc 51(4):470–476. doi: 10.1366/0003702971940738 CrossRefGoogle Scholar
  13. Grigoriev D, Gorin D, Sukhorukov GB, Yashchenok A, Maltseva E, Mohwald H (2007) Polyelectrolyte/magnetite nanoparticle multilayers: preparation and structure characterization. Langmuir 23(24):12388–12396. doi: 10.1021/la700963h CrossRefGoogle Scholar
  14. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. doi: 10.1016/j.biomaterials.2004.10.012 CrossRefGoogle Scholar
  15. Iglesias O, Labarta A (2004) Role of surface disorder on the magnetic properties and hysteresis of nanoparticles. Phys B 343(1–4):286–292. doi: 10.1016/j.physb.2003.08.019 CrossRefGoogle Scholar
  16. Iida H, Takayanagi K, Nakanishi T, Osaka T (2007) Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties 14 by controlled hydrolysis. J Colloid Interface Sci 314(1):274–280. doi: 10.1016/j.jcis.2007.05.047 CrossRefGoogle Scholar
  17. Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2(3):194–205. doi: 10.1021/mp0500014 CrossRefGoogle Scholar
  18. JCPDS (1981) Powder diffraction file search manual. International Centre for Diffraction Data, PennsylvaniaGoogle Scholar
  19. Katz E, Sheeney-Haj-Ichia L, Basnar B, Felner I, Willner I (2004) Magnetoswitchable controlled hydrophilicity/hydrophobicity of electrode surfaces using alkyl-chain-functionalized magnetic particles: application for switchable electrochemistry. Langmuir 20(22):9714–9719. doi: 10.1021/la048476+ CrossRefGoogle Scholar
  20. Keng PY, Shim I, Korth BD, Douglas JF, Pyun J (2007) Synthes is and self-assembly of polymer-coated ferromagnetic nanoparticles. ACS Nano 1(4):279–292. doi: 10.1021/nn7001213 CrossRefGoogle Scholar
  21. Kim EH, Lee HS, Kwak BK, Kim BK (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330. doi: 10.1016/j.jmmm.2004.11.093 CrossRefGoogle Scholar
  22. Kimata M, Nakagawa D, Hasegawa M (2003) Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide. Powder Technol 132(2–3):112–118. doi: 10.1016/s0032-5910(03)00046-9 CrossRefGoogle Scholar
  23. Knobel M, Nunes WC, Socolovsky LM, De Biasi E, Vargas JM, Denardin JC (2008) Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J Nanosci Nanotechnol 8(6):2836–2857. doi: 10.1166/jnn.2008.017 Google Scholar
  24. Kotov NA, Dekany I, Fendler JH (1995) Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films. J Phys Chem 99(35):13065–13069. doi: 10.1021/j100035a005 CrossRefGoogle Scholar
  25. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi: 10.1021/cr068445e CrossRefGoogle Scholar
  26. Lee J, Isobe T, Senna M (1996) Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. J Colloid Interface Sci 177(2):490–494. doi: 10.1006/jcis.1996.0062 CrossRefGoogle Scholar
  27. Martins MVA, Bonfim C, da Silva WC, Crespilho FN (2010) Iron (III) nanocomposites for enzyme-less biomimetic cathode: a promising material for use in biofuel cells. Electrochem Commun 12(11):1509–1512. doi: 10.1016/j.elecom.2010.08.020 CrossRefGoogle Scholar
  28. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248. doi: 10.1109/tmag.1981.1061188 CrossRefGoogle Scholar
  29. Mayya KS, Schoeler B, Caruso F (2003) Preparation and organization of nanoscale polyelectrolyte-coated gold nanoparticles. Adv Funct Mater 13(3):183–188. doi: 10.1002/adfm.200390028 CrossRefGoogle Scholar
  30. Miller MM, Prinz GA, Cheng SF, Bounnak S (2002) Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Appl Phys Lett 81(12):2211–2213. doi: 10.1063/1.1507832 CrossRefGoogle Scholar
  31. Morrison SA, Cahill CL, Carpenter EE, Calvin S, Harris VG (2005) Atomic engineering of mixed ferrite and core-shell nanoparticles. J Nanosci Nanotechnol 5(9):1323–1344. doi: 10.1166/jnn.2005.303 CrossRefGoogle Scholar
  32. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, OxfordGoogle Scholar
  33. Raposo M, Pontes RS, Mattoso LHC, Oliveira ON (1997) Kinetics of adsorption of poly(o-methoxyaniline) self-assembled films. Macromolecules 30(20):6095–6101. doi: 10.1021/ma970228f CrossRefGoogle Scholar
  34. Salazar-Alvarez G, Muhammed M, Zagorodni AA (2006) Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chem Eng Sci 61(14):4625–4633. doi: 10.1016/j.ces.2006.02.032 CrossRefGoogle Scholar
  35. Siqueira JR, Crespilho FN, Zucolotto V, Oliveira ON (2007) Bifunctional electroactive nanostructured membranes. Electrochem Commun 9(11):2676–2680. doi: 10.1016/j.elecom.2007.08.009 CrossRefGoogle Scholar
  36. Siqueira JR, Caseli L, Crespilho FN, Zucolotto V, Oliveira ON (2010) Immobilization of biomolecules on nanostructured films for biosensing. Biosens Bioelectron 25(6):1254–1263. doi: 10.1016/j.bios.2009.09.043 CrossRefGoogle Scholar
  37. Skomski R (2003) Nanomagnetics. J Phys 15(20):R841–R896. doi: 10.1088/0953-8984/15/20/202 Google Scholar
  38. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992. doi: 10.1126/science.287.5460.1989 CrossRefGoogle Scholar
  39. Wan JX, Chen XY, Wang ZH, Yang XG, Qian YT (2005) A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J Cryst Growth 276(3–4):571–576. doi: 10.1016/j.jcrysgro.2004.11.423 CrossRefGoogle Scholar
  40. Yashchenok AM, Gorin DA, Badylevich M, Serdobintsev AA, Bedard M, Fedorenko YG, Khomutov GB, Grigoriev DO, Mohwald H (2010) Impact of magnetite nanoparticle incorporation on optical and electrical properties of nanocomposite LbL assemblies. Phys Chem Chem Phys 12(35):10469–10475. doi: 10.1039/c004242k CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Valéria S. Marangoni
    • 1
  • Marccus Victor A. Martins
    • 3
  • José A. Souza
    • 3
  • Osvaldo N. OliveiraJr.
    • 1
  • Valtencir Zucolotto
    • 1
  • Frank N. Crespilho
    • 2
    • 3
  1. 1.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Instituto de Química de São Carlos, CP 780, Universidade de São PauloSão CarlosBrazil
  3. 3.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto AndréBrazil

Personalised recommendations