Aggregation and adhesion of gold nanoparticles in phosphate buffered saline

  • Shangfeng DuEmail author
  • Kevin Kendall
  • Panteha Toloueinia
  • Yasamin Mehrabadi
  • Gaurav Gupta
  • Jill Newton
Research Paper


In applications in medicine and more specifically drug delivery, the dispersion stability of nanoparticles plays a significant role on their final performances. In this study, with the use of two laser technologies, dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA), we report a simple method to estimate the stability of nanoparticles dispersed in phosphate buffered saline (PBS). Stability has two features: (1) self-aggregation as the particles tend to stick to each other; (2) disappearance of particles as they adhere to surrounding substrate surfaces such as glass, metal, or polymer. By investigating the effects of sonication treatment and surface modification by five types of surfactants, including nonylphenol ethoxylate (NP9), polyvinyl pyrrolidone (PVP), human serum albumin (HSA), sodium dodecyl sulfate (SDS) and citrate ions on the dispersion stability, the varying self-aggregation and adhesion of gold nanoparticles dispersed in PBS are demonstrated. The results showed that PVP effectively prevented aggregation, while HSA exhibited the best performance in avoiding the adhesion of gold nanoparticle in PBS onto glass and metal. The simple principle of this method makes it a high potential to be applied to other nanoparticles, including virus particles, used in dispersing and processing.


Nanoparticles Aggregation Adhesion Dynamic light scattering Nanoparticle tracking analysis Nanomedicine 



This study was supported by a Research Fellowship from Science City Research Alliance (SCRA) awarded to Dr Du.

Supplementary material

11051_2012_758_MOESM1_ESM.mpg (1.6 mb)
A short movie of NTA measurement for the sample with 30 ppm PVP added in gold nanoparticles dispersed in PBS. Supplementary material 1 (MPG 1674 kb)
11051_2012_758_MOESM2_ESM.doc (94 kb)
Supplementary material 2 (DOC 94 kb)


  1. (2011) The dose makes the poison. Nat Nanotechnol 6(6):329Google Scholar
  2. Alexis F, Pridgen E et al (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515CrossRefGoogle Scholar
  3. Barreto JA, O’Malley W et al (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12):H18–H40CrossRefGoogle Scholar
  4. Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, MineolaGoogle Scholar
  5. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782CrossRefGoogle Scholar
  6. Bootz A, Vogel V et al (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57(2):369–375CrossRefGoogle Scholar
  7. Cho EC, Zhang Q et al (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6):385–391CrossRefGoogle Scholar
  8. Crespo-Quesada M, Andanson J-M et al (2011) UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and catalytic behavior. Langmuir 27(12):7909–7916CrossRefGoogle Scholar
  9. Du S, Kendall K et al (2010) Measuring number-concentrations of nanoparticles and viruses in liquids on-line. J Chem Technol Biotechnol 85(9):1223–1228CrossRefGoogle Scholar
  10. Filipe V, Hawe A et al (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810CrossRefGoogle Scholar
  11. Gullotti E, Yeo Y (2009) Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery. Mol Pharm 6(4):1041–1051CrossRefGoogle Scholar
  12. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358(6383):209–215CrossRefGoogle Scholar
  13. Kendall K, Dhir A et al (2009) A new measure of molecular attractions between nanoparticles near kT adhesion energy. Nanotechnology 20(27):275701CrossRefGoogle Scholar
  14. Kendall K, Kendall M et al (2010a) Adhesion of cells, viruses and nanoparticles. Springer, New YorkGoogle Scholar
  15. Kendall K, Du S et al (2010b) Virus concentration and adhesion measured by laser tracking. J Adhes 86(10):1029–1040CrossRefGoogle Scholar
  16. Kobayashi Y, Tadaki Y et al (2007) Deposition of gold nanoparticles on polystyrene spheres by electroless metal plating technique. J Phys Conf Ser 61:582–586CrossRefGoogle Scholar
  17. Lavik E, von Recum H (2011) The role of nanomaterials in translational medicine. ACS Nano 5(5):3419–3424CrossRefGoogle Scholar
  18. Lee JH, Kim DO et al (2007) Direct metallization of gold nanoparticles on a polystyrene bead surface using cationic gold ligands. Macromol Rapid Commun 28(5):634–640CrossRefGoogle Scholar
  19. Lee EP, Peng Z et al (2008) Electrocatalytic properties of Pt nanowires supported on Pt and W gauzes. ACS Nano 2(10):2167–2173CrossRefGoogle Scholar
  20. Malloy A, Carr B (2006) NanoParticle tracking analysis—the Halo System. Part Part Syst Charact 23(2):197–204CrossRefGoogle Scholar
  21. Radziuk D, Grigoriev D et al (2010) Ultrasound-assisted fusion of preformed gold nanoparticles. J Phys Chem C 114(4):1835–1843CrossRefGoogle Scholar
  22. Schellekens H (2002) Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov 1(6):457–462CrossRefGoogle Scholar
  23. Sekhon BS, Kamboj SR (2010) Inorganic nanomedicine—part 2. Nanomed Nanotechnol Biol Med 6(5):612–618CrossRefGoogle Scholar
  24. Sungchul J, Daniel FB (2010) Adhesion mechanisms of nanoparticle silver to substrate materials: identification. Nanotechnology 21(5):055204CrossRefGoogle Scholar
  25. Takayasu MM, Galembeck F (1998) Determination of the equivalent radii and fractal dimension of polystyrene latex aggregates from sedimentation coefficients. J Colloid Interf Sci 202(1):84–88CrossRefGoogle Scholar
  26. Tian J, Jin J et al (2010) Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae. Langmuir 26(11):8762–8768CrossRefGoogle Scholar
  27. Tian J, Zheng F et al (2011) Self-assembly of polystyrene with pendant hydrophilic gold nanoparticles: the influence of the hydrophilicity of the hybrid polymers. J Mater Chem 21(42):16928–16934CrossRefGoogle Scholar
  28. Zhong Z, Chen F et al (2006) Assembly of Au colloids into linear and spherical aggregates and effect of ultrasound irradiation on structure. J Mater Chem 16(5):489–495CrossRefGoogle Scholar
  29. Zhou J, Ralston J et al (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interf Sci 331(2):251–262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Shangfeng Du
    • 1
    Email author
  • Kevin Kendall
    • 1
  • Panteha Toloueinia
    • 1
  • Yasamin Mehrabadi
    • 1
  • Gaurav Gupta
    • 1
  • Jill Newton
    • 1
  1. 1.School of Chemical EngineeringUniversity of BirminghamEdgbaston, BirminghamUK

Personalised recommendations