Structure and electronic properties of boron nitride sheet with grain boundaries

  • Zhiguo WangEmail author
Research Paper


Using first-principles calculations, the structure, stability, and electronic properties of BN sheets with grain boundaries (GBs) are investigated. Two types of GBs, i.e., zigzag- and armchair-oriented GBs, are considered. Simulation results reveal that the zigzag-oriented GBs are more stable than the armchair-oriented ones. The GBs induce defect levels located within the band gap, which must be taken into account when building nanoelectronic devices.


BN sheet GBs First-principles calculations Electronic properties Modeling and simulation 



This study was financially supported by the Young Scientists Foundation of Sichuan (09ZQ026-029).


  1. Azevedo S, Kaschny JR, de Castilho CMC, Mota FD (2007) A theoretical investigation of defects in a boron nitride monolayer. Nanotechnology 18:495–707CrossRefGoogle Scholar
  2. Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band-gap constancy of boron-nitride nanotubes. Europhys Lett 28:335–340CrossRefGoogle Scholar
  3. Cervenka J, Katsnelson MI, Flipse CFJ (2009) Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat Phys 5:840–844CrossRefGoogle Scholar
  4. Cockayne E, Rutter GM, Guisinger NP, Crain JN, First PN, Stroscio JA (2011) Grain boundary loops in graphene. Phys Rev B 83:195425CrossRefGoogle Scholar
  5. Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu(111). Nano Lett 10:3512–3516CrossRefGoogle Scholar
  6. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  7. Grantab R, Shenoy VB, Ruoff RS (2010) Anomalous strength characteristics of tilt grain boundaries in graphene. Science 330:946–948CrossRefGoogle Scholar
  8. Jin C, Lin F, Suenaga K, Iijima S (2009) Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 102:195505CrossRefGoogle Scholar
  9. Kim KK, Hsu, A, Jia XT, Kim SM, Shi YM, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T, Kong, J (2011a) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. doi: 10.1021/nl203249a
  10. Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A (2011b) Grain boundary mapping in polycrystalline graphene. ACS Nano 5:2142–2146CrossRefGoogle Scholar
  11. Kleinman L, Bylander DM (1982) Efficacious form for model pseudopotentials. Phys Rev Lett 48:1425–1428CrossRefGoogle Scholar
  12. Lahiri J, Lin Y, Bozkurt P, Oleynik II, Batzill M (2010) An extended defect in graphene as a metallic wire. Nat Nanotechnol 5:326–329CrossRefGoogle Scholar
  13. Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314CrossRefGoogle Scholar
  14. Li XS, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816–2819CrossRefGoogle Scholar
  15. Liu YY, Yakobson BI (2010) Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett 10:2178–2183CrossRefGoogle Scholar
  16. Malola S, Hakkinen H, Koskinen P (2010) Structural, chemical, and dynamical trends in graphene grain boundaries. Phys Rev B 81:165447CrossRefGoogle Scholar
  17. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  18. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRefGoogle Scholar
  19. Paine RT, Narula CK (1990) Synthetic routes to boron-nitride. Chem Rev 90:73–91CrossRefGoogle Scholar
  20. Park CH, Louie SG (2008) Energy gaps and stark effect in boron nitride nanoribbons. Nano Lett 8:2200–2203CrossRefGoogle Scholar
  21. Paszkowicz W, Pelka JB, Knapp M, Szyszko T, Podsiadlo S (2002) Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Appl PhysA 75:431–435CrossRefGoogle Scholar
  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  23. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron-nitride nanotubes. Phys Rev B 49:5081–5084CrossRefGoogle Scholar
  24. Saito Y, Maida M (1999) Square, pentagon, and heptagon rings at BN nanotube tips. Phys Chem A 103:1292CrossRefGoogle Scholar
  25. Sankey OF, Niklewski DJ (1989) Abinitio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. Phys Rev B 40:3979–3995CrossRefGoogle Scholar
  26. Si MS, Xue DS (2007) Magnetic properties of vacancies in a graphitic boron nitride sheet by first-principles pseudopotential calculations. Phys Rev B 75:193409CrossRefGoogle Scholar
  27. Si MS, Li JY, Shi HG, Niu XN, Xue DS (2009) Divacancies in graphitic boron nitride sheets. Europhys Lett 86:46002CrossRefGoogle Scholar
  28. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condes Matter 14:2745–2779CrossRefGoogle Scholar
  29. Terrones M, Charlier JC, Gloter A, Cruz-Silva E, Terres E, Li YB, Vinu A, Zanolli Z, Dominguez JM, Terrones H, Bando Y, Golberg D (2008) Experimental and theoretical studies suggesting the possibility of metallic boron nitride edges in porous nanourchins. Nano Lett 8:1026–1032CrossRefGoogle Scholar
  30. Topsakal M, Akturk E, Ciraci S (2009) First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys Rev B 79:115442CrossRefGoogle Scholar
  31. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  32. Yazyev OV, Louie SG (2010a) Topological defects in graphene: dislocations and grain boundaries. Phys Rev B 81:195420CrossRefGoogle Scholar
  33. Yazyev OV, Louie SG (2010b) Electronic transport in polycrystalline graphene. Nat Mater 9:806–809CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations