Silica encapsulation of luminescent silicon nanoparticles: stable and biocompatible nanohybrids

  • Vincent Maurice
  • Ilaria Rivolta
  • Julien Vincent
  • Olivier Raccurt
  • Jean-Noel Rouzaud
  • Giuseppe Miserrochi
  • Eric Doris
  • Cécile Reynaud
  • Nathalie Herlin-Boime
Research Paper

Abstract

This article presents a process for surface coating and functionalization of luminescent silicon nanoparticles. The particles were coated with silica using a microemulsion process that was adapted to the fragile silicon nanoparticles. The as-produced core–shell particles have a mean diameter of 35 nm and exhibit the intrinsic photoluminescence of the silicon core. The silica layer protects the core from aqueous oxidation for several days, thus allowing the use of the nanoparticles for biological applications. The nanoparticles were further coated with amines and functionalized with polyethylene glycol chains and the toxicity of the particles has been evaluated at the different stages of the process. The core–shell nanoparticles exhibit no acute toxicity towards lung cells, which is promising for further development.

Keywords

Nanoparticles Functionalization Solgel Toxicity Bio-imaging Biotechnology 

Supplementary material

11051_2011_697_MOESM1_ESM.doc (4 mb)
Supplementary material 1 (DOC 4,089 kb)

References

  1. Arriagada FJ, Osseo-Asare K (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211:210–220CrossRefGoogle Scholar
  2. Bagwe RP, Yang C, Hilliard LR, Tan W (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20:8336–8342CrossRefGoogle Scholar
  3. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22:4357–4362CrossRefGoogle Scholar
  4. Best SA, Merz KM Jr, Reynolds CH (1997) GB/SA-based continuum solvation model for octanol. J Phys Chem B 101:10479–10487CrossRefGoogle Scholar
  5. Blum AS, Moore MH, Ratna BR (2008) Quantum dot fluorescence as a function of alkyl chain length in aqueous environments. Langmuir 24:9194–9197CrossRefGoogle Scholar
  6. Bomatí-Miguel O, Tartaj P, Morales MP, Bonville P, Golla-Schindler U, Zhao XQ, Veintemillas-Verdaguer S (2006) Core–shell iron–iron oxide nanoparticles synthesized by laser-induced pyrolysis. Small 2:1476–1483CrossRefGoogle Scholar
  7. Borsella E, Botti S, Cremona M, Martelli S, Montereali RM, Nesterenko A (1997) Photoluminescence from oxidised Si nanoparticles produced by CW Co2 laser synthesis in a continuous-flow reactor. J Mater Sci Lett 16:221CrossRefGoogle Scholar
  8. Botto L, Beretta E, Bulbarelli A, Rivolta I, Lettiero B, Leone BE, Miserocchi G, Palestini P (2008) Hypoxia-induced modifications in plasma membranes and lipid microdomains in A549 cells and primary human alveolar cells. J Cell Biochem 105:503–513CrossRefGoogle Scholar
  9. Cannon WR, Danforth SC, Flint JH, Haggerty JS, Marra RA (1982) Sinterable ceramic powders from laser-driven reactions: I, process description and modeling. J Am Ceram Soc 65:324–330CrossRefGoogle Scholar
  10. Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82:909–966CrossRefGoogle Scholar
  11. Dantelle G, Rondin L, Slablab A, Lainé F, Carrel F, Bergonzo P, Perruchas S, Gacoin T, Treussart F, Roch J-F (2010) Efficient production of NV colour centres in nanodiamonds using high-energy electron irradiation. J Lumin 130:1655CrossRefGoogle Scholar
  12. Denyer SP (1995) Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegrad 36:227–245CrossRefGoogle Scholar
  13. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  14. Ehbrecht M, Kohn B, Huisken F, Laguna MA, Paillard V (1997) Photoluminescence and resonant Raman spectra of silicon films produced by size-selected cluster beam deposition. Phys Rev B 56:6958–6964CrossRefGoogle Scholar
  15. Erogbogbo F, Yong K, Roy I, Xu GX, Prasad PN, Swihart MT (2008) Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2:873–878CrossRefGoogle Scholar
  16. Erogbogbo F, Yong KT, Hu R, Law WC, Ding H, Chang CW, Prasad PN, Swihart MT (2010) Biocompatible magnetofluorescent probes: luminescent silicon quantum dots coupled with superparamagnetic iron(iii) oxide. ACS Nano 4:5131CrossRefGoogle Scholar
  17. Ganguli AK, Ganguly A, Vaidya S (2010) Microemulsion-based synthesis of nanocrystalline materials. Chem Soc Rev 39:474–485CrossRefGoogle Scholar
  18. Giaume D, Buissette V, Lahlil K, Gacoin T, Boilot J-P, Casanova D, Beaurepaire E, Sauviat M-P, Alexandrou A (2005) Emission properties and applications of nanostructured luminescent oxide nanoparticles. Prog Solid State Chem 33:99–106CrossRefGoogle Scholar
  19. He Y, Su Y, Yang X, Kang Z, Xu T, Zhang R, Fan C, Lee ST (2009) Photo and pH stable, highly-luminescent silicon nanospheres and their bioconjugates for immunofluorescent cell imaging. J Am Chem Soc 131:4434–4438CrossRefGoogle Scholar
  20. Hua F, Swihart MT, Ruckenstein E (2005) Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir 21:6054–6062CrossRefGoogle Scholar
  21. Huhtala A, Pohjonen T, Salminen L, Salminen A, Kaarniranta K, Uusitalo H (2007) In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: direct contact studies. J Biomed Mater Res A 83:407–413Google Scholar
  22. Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research recent progress and present challenges. Adv Mater 18:1953–1964CrossRefGoogle Scholar
  23. Lacour F, Guillois O, Portier X, Perez H, Herlin N, Reynaud C (2007) Laser pyrolysis synthesis and characterization of luminescent silicon nanocrystals. Physica E 38:11–15CrossRefGoogle Scholar
  24. Ledoux G, Guillois O, Porterat D, Reynaud C, Huisken F, Kohn B, Paillard V (2000) Photoluminescence properties of silicon nanocrystals as a function of their size. Phys Rev B 62:15942CrossRefGoogle Scholar
  25. Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467CrossRefGoogle Scholar
  26. Li X, He Y, Talukdar SS, Swihart MT (2003) Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19:8490–8496CrossRefGoogle Scholar
  27. Li X, He Y, Swihart MT (2004) Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. Langmuir 20:4720–4727CrossRefGoogle Scholar
  28. Mangolini L, Thimsen E, Kortshagen U (2005) High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett 5:655–659CrossRefGoogle Scholar
  29. Meyers SR, Juhn FS, Griset AP, Luman NR, Grinstaff NW (2008) Anionic amphiphilic dendrimers as antibacterial agents. J Am Chem Soc 130:14444–14445CrossRefGoogle Scholar
  30. Pignon B, Maskrot H, Leconte Y, Reynaud C, Herlin-Boime N, Guyot Ferreol V, Pouget T, Tranchant JF, Gervais M, Coste S (2008) Versatility of laser pyrolysis applied to the synthesis of TiO2 nanoparticles—application to UV attenuation. Eur J Inorg Chem 2008:883–889CrossRefGoogle Scholar
  31. Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27:227CrossRefGoogle Scholar
  32. Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655CrossRefGoogle Scholar
  33. Sublemontier O, Lacour F, Leconte Y, Herlin-Boime N, Reynaud C (2009) Co2 laser-driven pyrolysis synthesis of silicon nanocrystals and applications. J Alloys Compd 483:499–502CrossRefGoogle Scholar
  34. Vincent J, Maurice V, Paquez X, Sublemontier O, Leconte Y, Guillois O, Reynaud C, Herlin-Boime N, Raccurt O, Tardif F (2010) Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J Nanopart Res 12:39–46CrossRefGoogle Scholar
  35. Voicu I, Armand X, Cauchetier M, Herlin N, Bourcier S (1996) Laser synthesis of fullerenes from benzene–oxygen mixtures. Chem Phys Lett 256:261CrossRefGoogle Scholar
  36. Wang F, Tan WB, Zhang Y, Fan X, Wang M (2006) Luminescent nanomaterials for biological labelling. Nanotechnology 17:R1–R13CrossRefGoogle Scholar
  37. Wang Q, Ni H, Pietzsch A, Hennies F, Bao Y, Chao Y (2011) Synthesis of water-dispersible photoluminescent silicon nanoparticles and their use in biological fluorescent imaging. J Nanopart Res 13:405–413CrossRefGoogle Scholar
  38. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed Engl 44:4550–4554CrossRefGoogle Scholar
  39. Yao L, Xu G, Dou W, Bai Y (2008) The control of size and morphology of nanosized silica in Triton X-100 based reverse micelle. Colloids Surf A: Physicochem Eng Aspects 316:8–14CrossRefGoogle Scholar
  40. Yoffe AD (1993) Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv Phys 42:173–262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Vincent Maurice
    • 1
  • Ilaria Rivolta
    • 2
  • Julien Vincent
    • 1
  • Olivier Raccurt
    • 3
  • Jean-Noel Rouzaud
    • 4
  • Giuseppe Miserrochi
    • 2
  • Eric Doris
    • 5
  • Cécile Reynaud
    • 1
  • Nathalie Herlin-Boime
    • 1
  1. 1.DSM/IRAMIS/SPAM-LFPCEA SaclayGif-sur-Yvette CedexFrance
  2. 2.Department of Experimental Medicine (DIMS)University of Milano-BicoccaMonzaItaly
  3. 3.Department of Nano Materials, NanoChemistry and NanoSafety Laboratory (DRT/LITEN/DTNM/LCSN)CEA GrenobleGrenoble Cedex 9France
  4. 4.Laboratoire de GéologieEcole Normale supérieure de ParisParis Cedex 5France
  5. 5.Service de Chimie Bioorganique et de Marquage, iBiTecSCEAGif-sur-YvetteFrance

Personalised recommendations