Chemical vapor functionalization: a continuous production process for functionalized ZnO nanoparticles

  • Moazzam Ali
  • Martin D. Donakowski
  • Christian Mayer
  • Markus Winterer
Research Paper


The continuous functionalization of nanoparticles in the gas-phase directly after their generation, chemical vapor functionalization, is studied with ZnO and 1-hexanol as a model system using two reactors in series. In the first reactor ZnO nanoparticles are synthesized in the gas-phase from diethylzinc and oxygen at 1,073 K with grain sizes of 13 nm as determined by Rietveld refinement of X-ray diffractograms. The second reactor, connected at the exit of the first reactor and kept at lower temperatures (573, 673, and 773 K), is used as a functionalization chamber. At the connection point of the two reactors, the vapor of 1-hexanol is injected to react with the surface of ZnO nanoparticles in the gas phase. The process has been analyzed by quadrupole mass spectrometry to obtain information about optimal conditions for functionalization. Dynamic light scattering data show that the functionalized particles have substantially improved colloidal dispersibility with hydrodynamic diameters of 60 nm. Diffuse reflectance fourier transform infrared spectra and 1H nuclear magnetic resonance spectra are consistent with 1-hexanol adsorbed at the particle surface acting as a functionalizing agent. The agglomerate size is substantially reduced owing to chemical vapor functionalization.


Chemical vapor functionalization ZnO nanoparticles Colloids and 1-hexanol Nanoparticle agglomeration 



The financial support of the German Research Foundation (DFG) through the Research Training Group: Nanotronics (1240) is gratefully acknowledged. We thank Nina Friedenberger (Farle group) for TEM measurements (Solid State Physics, University of Duisburg-Essen) and Manfred Zähres (Physical Chemistry, University of Duisburg-Essen) for NMR measurements. We are grateful for chemical analysis performed in the Epple group (Inorganic Chemistry, University of Duisburg-Essen) and Fourier Transform Infrared Spectroscopy measured in the Lorke group (Solid State Physics, University of Duisburg-Essen).


  1. Ali M, Donakowski MD, Winterer M (2010) Chemical vapor functionalization of ZnO nanocrystals. Mat Res Soc Symp Proc 1260:3CrossRefGoogle Scholar
  2. Ali M, Friedenberger N, Spasova M, Winterer M (2009) A novel approach for chemical vapor synthesis of ZnO nanocrystals: optimization of yield, crystallinity. Chem Vap Dep 15:192CrossRefGoogle Scholar
  3. Ali M, Winterer M (2010) ZnO nanocrystals: surprisingly ‘alive’. Chem Mater 22:85CrossRefGoogle Scholar
  4. Deb B, Kumar V, Druffel TL, Sunkara MK (2009) Functionalizing titania nanoparticle surfaces in a fluidized bed plasma reactor. Nanotechnology 20:465701CrossRefGoogle Scholar
  5. Djurisic AB, Leung YH (2006) Optical properties of ZnO nanostructures. Small 2:944CrossRefGoogle Scholar
  6. Fotou GP, Kodas TT (1997) Sequential gas-phase formation of Al2O3 and SiO2 layers on aerosol-made TiO2 particles. Adv Mater 9:420CrossRefGoogle Scholar
  7. Lee IK, Winterer M (2005) Aerosol mass spectrometer for the in situ analysis of chemical vapor synthesis processes in hot wall reactors. Rev Sci Instrum 76:095104CrossRefGoogle Scholar
  8. Lewis JA (2000) Colloidal processing of ceramics. J Am Ceram Soc 83:2341CrossRefGoogle Scholar
  9. Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr: Newsletter of the CPD 1999, 21, 14. Program available at
  10. Mangolini L, Kortshagen U (2007) Plasma-assisted synthesis of silicon nanocrystal inks. Adv Mater 19:2513CrossRefGoogle Scholar
  11. Mulvaney P (1998) Zeta potential and colloid reaction kinetics. In: Fendler JH (ed) Nanoparticles and nanostructured films. Wiley-VCH, WeinheimGoogle Scholar
  12. Noei H, Qiu H, Wang Y, Löffler E, Wöll C, Muhler M (2008) The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy. Phys Chem Chem Phys 10:7092CrossRefGoogle Scholar
  13. Powell QH, Kodas TT, Anderson BM (1996) Coating of TiO2 particles by chemical vapor deposition of SiO2. Chem Vap Dep 2(5):179–181Google Scholar
  14. Powell QH, Fotou GP, Kodas TT, Anderson BM, Gao Y (1997) Gas-phase coating of TiO2 with SiO2 in a continuous flow hot-wall aerosol reactor. J Mater Res 12:552CrossRefGoogle Scholar
  15. Ravi S, Raghunathan TS (1988) Dehydrogenation of butan-2-ol on zinc oxide catalyst: a continuous stirred tank reactor study. Ind Eng Chem Res 27:2050CrossRefGoogle Scholar
  16. Sagmeister M, Brossmann U, List EJW, Ochs R, Szabó DV, Würschum R (2008) In-situ dispersion of ZrO2 nano-particles coated with pentacene. Phys Stat Sol (RRL) 2:203CrossRefGoogle Scholar
  17. Sakohara S, Ishida M, Anderson MA (1998) Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate. J Phys Chem B 102:10169CrossRefGoogle Scholar
  18. Schallehn M, Winterer M, Weirich TE, Keiderling U, Hahn H (2003) In-situ preparation of polymer coated alumina nanopowders by chemical vapor synthesis. Chem Vap Dep 9:40CrossRefGoogle Scholar
  19. Sigmund W, Bell NS, Bergström L (2000) Novel powder-processing methods for advanced ceramics. J Am Ceram Soc 83:1557CrossRefGoogle Scholar
  20. Srdic VV, Winterer M, Hahn H (2001) Nanocrystalline zirconia surface-doped with alumina: chemical vapor synthesis, characterization, and properties. J Am Ceram Soc 84:2771CrossRefGoogle Scholar
  21. Suffner J, Schechner G, Sieger H, Hahn H (2007) In-situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Dep 13:459CrossRefGoogle Scholar
  22. Szabo DV, Vollath D (1999) Nanocomposites from coated nanoparticles. Adv Mater 11:1313CrossRefGoogle Scholar
  23. Teleki A, Bjelobrk N, Pratsinis SE (2010) Continuous surface functionalization of flame-made TiO(2) nanoparticles. Langmuir 26:5815CrossRefGoogle Scholar
  24. Vollath D, Szabo DV (1994) Nanocoated particles: a special type of ceramic powder. Nanostr Mater 4:927CrossRefGoogle Scholar
  25. Vollath D, Szabo DV, Hausselt (1997) Synthesis and properties of ceramic nanoparticles and nanocomposites. J Eur Ceram Soc 17:1317CrossRefGoogle Scholar
  26. Wang LQ, Exarhos GJ, Windisch CF Jr, Yao C, Pederson LR, Zhou XD (2007) Probing hydrogen in ZnO nanorods using solid-state 1H nuclear magnetic resonance. Appl Phys Lett 90:173115CrossRefGoogle Scholar
  27. Winterer M (2002) Nanocrystalline ceramics—synthesis and structure. Springer series in materials science, vol 53. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Moazzam Ali
    • 1
  • Martin D. Donakowski
    • 2
  • Christian Mayer
    • 3
  • Markus Winterer
    • 1
  1. 1.Nanoparticle Process Technology and Center for Nanointegration Duisburg-Essen (CeNIDE), University Duisburg-EssenDuisburgGermany
  2. 2.Department of ChemistryUniversity of MinnesotaMinneapolisUSA
  3. 3.Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University Duisburg-EssenEssenGermany

Personalised recommendations