Cluster organization in co-sputtered platinum-carbon films as revealed by grazing incidence X-ray scattering

  • M. Mougenot
  • P. Andreazza
  • C. Andreazza-Vignolle
  • R. Escalier
  • Th. Sauvage
  • O. Lyon
  • P. Brault
Research Paper


Nanostructured platinum-carbon thin films were prepared by magnetron co-sputtering method for designing efficient catalytic thin films, like fuel cells electrodes. The in-depth morphology of composite films was studied using surface sensitive X-ray techniques (grazing incidence small-angle scattering and reflectivity), consolidated by electron microscopy investigations. This study elucidates the growth mode of co-sputtered platinum-carbon thin film: 2-nm-sized platinum clusters are growing in surrounding simultaneously growing carbon columns (20-nm diameter range). In particular, the platinum cluster growth and distribution in the plane of the substrate surface are driven by surface diffusion and coalescence phenomena. Finally, this anisotropic distribution of platinum clusters correlated to the textured morphology of carbon matrix leads to a catalytic thin film morphology very suitable for electrochemical processes in fuel cell electrodes.


Platinum GISAXS Nanostructured films Clusters Sputtering Fuel cells 



The authors thank the SOLEIL French synchrotron committee for beam time allocation and the beamline teams for technical assistance during X-ray scattering experiments. The magnetron sputtering system PulP is made available graciously by MID Dreux Innovation. CNRS is gratefully acknowledged for granting the projects ‘PIE AMELi-0Pt and AMEPlas.’


  1. Andreazza P, Andreazza-Vignolle C, Rozenbaum JP, Thomann AL, Brault P (2002) Nucleation and initial growth of platinum islands by plasma sputter deposition. Surf Coat Technol 151:122–127CrossRefGoogle Scholar
  2. Babonneau D (2010) FitGISAXS: software package for modelling and analysis of GISAXS data using IGOR Pro. J Appl Cryst 43:929–936CrossRefGoogle Scholar
  3. Babonneau D, Cabioc’h T, Naudon A, Girard JC, Denanot MF (1998) Silver nanoparticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite. Surf Sci 409:358–371CrossRefGoogle Scholar
  4. Babonneau D, Camelio S, Lantiat D, Simonot L, Michel A (2009) Waveguiding and correlated roughness effects in layered nanocomposite thin films studied by grazing-incidence small-angle X-ray scattering. Phys Rev B 80:155446CrossRefGoogle Scholar
  5. Brault P, Caillard A, Thomann AL, Mathias J, Charles C, Boswell R, Escribano S, Durand J, Sauvage T (2004) Plasma sputtering deposition of platinum into porous fuel cell electrodes. J Phys D 37:3419–3423CrossRefGoogle Scholar
  6. Brault P, Josserand C, Bauchire JM, Caillard A, Charles C, Boswell R (2009) Anomalous diffusion mediated by atom deposition into a porous substrate. Phys Rev Lett 102:045901CrossRefGoogle Scholar
  7. Caillard A, Charles C, Boswell R, Brault P, Coutanceau C (2007) Plasma based platinum nanoaggregates deposited on carbon nanofibers improve fuel cell efficiency. Appl Phys Lett 90:223119CrossRefGoogle Scholar
  8. Cavarroc M, Ennadjaoui A, Mougenot M, Brault P, Escalier R, Tessier Y, Durand J, Roualdès S, Sauvage T, Coutanceau C (2009) Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochem Commun 11:859–861CrossRefGoogle Scholar
  9. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804CrossRefGoogle Scholar
  10. Evans JW, Bartelt MC (2002) Sland sizes and capture zone areas in submonolayer deposition: Scaling and factorization of the joint probability distribution. Phys Rev B 66:235410CrossRefGoogle Scholar
  11. Gibaud A (1999) X-ray and neutron reflectivity: principles and applications. Springer, ParisGoogle Scholar
  12. Guizard C, Princivalle A (2009) Preparation and characterization of catalyst thin films. Catal Today 146:367–377CrossRefGoogle Scholar
  13. Hazra S, Gibaud A, Laffez P, Sella C (2000) Dependence of matrix and substrate on the morphology of nanocermet thin films. Eur Phys J B 14:363–369CrossRefGoogle Scholar
  14. Maaza M, Gibaud A, Sella A, Pardo B, Dunsteter F, Corno J, Bridou F, Vignaud G, Desert A, Menelle A (1999) X-ray scattering by nano-particles within granular thin films, investigation by grazing angle X-ray reflectometry. Eur Phys J B 7:339–345CrossRefGoogle Scholar
  15. Mahieu S, Ghekiere P, Depla D, de Gryse R (2006) Biaxial alignment in sputter deposited thin films. Thin Solid Films 515:1229–1240Google Scholar
  16. Matsumiya M, Shin W, Izu N, Murayama N (2003) Hydrogen-selective thermoelectric gas sensor. Sensors Actuators B 93:304–308CrossRefGoogle Scholar
  17. Naudon A, Babonneau D, Thiaudière D, Lequien S (2000) Grazing-incidence small-angle X-ray scattering applied to the characterization of aggregates in surface regions. Phys B 283:69–74CrossRefGoogle Scholar
  18. Pedersen JS (1994) Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. J Appl Cryst 27:595–608CrossRefGoogle Scholar
  19. Penuelas J, Andreazza P, Andreazza-Vignolle C, Tolentino HCN, De Santis M, Mottet C (2008) Controlling structure and morphology of CoPt nanoparticles through dynamical or static coalescence effects. Phys Rev Lett 100:115502CrossRefGoogle Scholar
  20. Rabat H, Brault P (2008) Plasma sputtering deposition of PEMFC porous carbon platinum electrodes. Fuel Cells 8:81–86CrossRefGoogle Scholar
  21. Rabat H, Andreazza C, Brault P, Caillard A, Béguin F, Charles C, Boswell R (2009) Carbon/platinum nanotextured films produced by plasma sputtering. Carbon 47:209–214CrossRefGoogle Scholar
  22. Renaud G, Lazzari R, Leroy R (2009) Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf Sci Rep 64:255–380CrossRefGoogle Scholar
  23. Revenant C, Leroy F, Lazzari R, Renaud G, Henry CR (2004) Quantitative analysis of grazing incidence small-angle X-ray scattering: Pd/MgO (001) growth. Phys Rev B 69:035411CrossRefGoogle Scholar
  24. Rutkov EV, Tontegonde AY (1996) Determination of the limiting solubility of carbon in platinum. Phys Solid State 38:351–353Google Scholar
  25. Tao WH, Tsai CH (2002) H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining. Sensors Actuators B 81:237–247CrossRefGoogle Scholar
  26. Tsao CS, Chen CY (2004) Small-angle X-ray scattering of carbon-supported Pt nanoparticles for fuel cell. Phys B 353:217–222CrossRefGoogle Scholar
  27. Vad T, Hajbolouri F, Haubold HG, Scherer GG, Wokaun A (2004) Anomalous small-angle X-ray scattering study on the nanostructure of co-sputtered platinum/carbon layers. J Phys Chem B 108:12442–12449CrossRefGoogle Scholar
  28. Venables J (2000) Introduction to surface and thin film processes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  29. Vrij A (1979) Mixtures of hard spheres in the Percus–Yevick approximation. Light scattering at finite angles. J Chem Phys 71:3267–3270CrossRefGoogle Scholar
  30. Yamamura Y, Tawara H (1996) Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. At Data Nucl Data Tables 62:149–253CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Mougenot
    • 1
    • 5
  • P. Andreazza
    • 2
  • C. Andreazza-Vignolle
    • 2
  • R. Escalier
    • 1
  • Th. Sauvage
    • 3
  • O. Lyon
    • 4
  • P. Brault
    • 1
  1. 1.GREMI UMR7344 CNRS Université d’OrléansOrleans Cedex 2France
  2. 2.Centre de Recehrcherches sur la Matière DiviséeCNRS Université d’OrléansOrleans Cedex 2France
  3. 3.CEMHTI UPR3079 CNRS Site CyclotronOrleans Cedex 2France
  4. 4.Synchrotron SOLEILGif-sur-Yvette CedexFrance
  5. 5.Agence Innovation MIDVernouilletFrance

Personalised recommendations