Assembly of γ-Fe2O3/polyaniline nanofilms with tuned dipolar interaction

  • M. A. G. Soler
  • L. G. Paterno
  • J. P. Sinnecker
  • J. G. Wen
  • E. H. C. P. Sinnecker
  • R. F. Neumann
  • M. Bahiana
  • M. A. Novak
  • P. C. Morais
Research Paper

Abstract

The internal morphology and magnetic properties of layer-by-layer assembled nanofilms of polyaniline (PANI) and maghemite (γ-Fe2O3—7.5-nm diameter) were probed with cross-sectional transmission electron microscopy (TEM) and magnetization measurements (magnetic hysteresis loops, magnetization using zero-field cooled/field-cooled protocols, and ac magnetic susceptibility). Additionally, simulations of the as-produced samples were performed to assess both the nanofilm’s morphology and the corresponding magnetic signatures using the cell dynamic system (CDS) approach and Monte Carlo (MC) through the standard Metropolis algorithm, respectively. Fine control of the film thickness and average maghemite particle–particle within this magnetic structure was accomplished by varying the number of bilayers (PANI/γ-Fe2O3) deposited onto silicon substrates or through changing the concentration of the maghemite particles suspended within the colloidal dispersion sample used for film fabrication. PANI/γ-Fe2O3 nanofilms comprising 5, 10, 25 and 50 deposited bilayers displayed, respectively, blocking temperatures (T B) of 30, 35, 39 and 40 K and effective energy barriers (ΔE/k B) of 1.0 × 103, 2.3 × 103, 2.8 × 103 and 2.9 × 103 K. Simulation of magnetic nanofilms using the CDS model provided the internal morphology to carry on MC simulation of the magnetic properties of the system taking into account the particle–particle dipolar interaction. The simulated (using CDS) surface–surface particle distance of 0.5, 2.5 and 4.5 nm was obtained for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. The simulated (using MC) T B values were 33.0, 30.2 and 29.5 K for nanofilms with thicknesses of 36.0, 33.9 and 27.1 nm, respectively. We found the experimental (TEM and magnetic measurements) and the simulated data (CDS and MC) in very good agreement, falling within the same range and displaying the same systematic trend. Our findings open up new perspectives for fabrication of magnetic nanofilms with pre-established (simulated) morphology and magnetic properties.

Keywords

Nanoparticle assembly Maghemite Polyaniline Layer-by-layer Dipolar interaction Magnetic film 

Notes

Acknowledgments

Maria A. G. Soler thanks Professor Steve Granick (Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA) for the hospitality in the period April–June, 2009, and CAPES-Brazil (4410-08-4). We are grateful to Dr. Wacek Swiech, Dr. Michael Marshall and Dr. Changhui Lei (Frederick Seitz Materials Research Laboratory, USA) for the support in the cross-sectional TEM measurements, Dr. Emilia C. D. Lima (Universidade Federal de Goiás, Brazil) for supplying the magnetic fluid samples and the Brazilian agencies CAPES, FAPERJ and MCT-CNPq for supporting this work.

References

  1. Alcantara GB, Paterno LG, Fonseca FJ, Morais PC, Soler MAG (2011) Morphology of cobalt ferrite nanoparticle-polyelectrolyte multilayered nanocomposites. J Magn Magn Mater 323:1372–1377CrossRefGoogle Scholar
  2. Alessio P, Rodríguez-Méndez ML, De Saja Saez JA, Constantino CJL (2010) Iron phthalocyanine in non-aqueous medium forming layer-by-layer films: growth mechanism, molecular architecture and applications. Phys Chem Chem Phys 12:3972–3983CrossRefGoogle Scholar
  3. Bahiana M, Oono Y (1990) Cell dynamical system approach to block copolymers. Phys Rev A 41:6763–6771CrossRefGoogle Scholar
  4. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110CrossRefGoogle Scholar
  5. Baldi G, Bonacchi D, Innocenti C, Lorenzi G, Sangregorio C (2007) Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties. J Magn Magn Mater 311:10–16CrossRefGoogle Scholar
  6. Bastos CSM, Bahiana M, Nunes WC, Novak MA, Altbir D, Vargas P, Knobel M (2002) Role of the alloy structure in the magnetic behavior of granular systems. Phys Rev B 66:214407CrossRefGoogle Scholar
  7. Blums E, Cebers A, Maiorov MM (1985) Magnetic Fluids. Walter de Gruyter, BerlinGoogle Scholar
  8. Correa-Duarte MA, Giersig M, Kotov NA, Liz-Marzan LM (1998) Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation. Langmuir 14:6430–6435CrossRefGoogle Scholar
  9. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237CrossRefGoogle Scholar
  10. Dey S, Mohanta K, Pal AJ (2010) Magnetic-field-assisted layer-by-layer electrostatic assembly of ferromagnetic nanoparticles. Langmuir 26:9627–9631CrossRefGoogle Scholar
  11. Dormann JL, Fiorani D, Tronc E (1997) Magnetic relaxation in fine-particle systems. In Prigogine I, Rice SA (eds) Adv Chem Phys 98: 283–494Google Scholar
  12. Dutta P, Manivannan A, Seehra MS, Shah N, Huffman GP (2004) Magnetic properties of nearly defect-free maghemite nanocrystals. Phys Rev B 70:174428CrossRefGoogle Scholar
  13. Gittleman JI, Abeles B, Bozowski S (1974) Superparamagnetism and relaxation effects in granular Ni-SiO2 and Ni-Al2O3 films. Phys Rev B 9:3891–3897CrossRefGoogle Scholar
  14. Grigoriev D, Gorin D, Sukhorukov GB, Yashchenok A, Maltseva E, Mohwald H (2007) Polyelectrolyte/magnetite nanoparticle multilayers: preparation and structure characterization. Langmuir 23:12388–12396CrossRefGoogle Scholar
  15. Hendriksen PV, Bodker F, Linderoth S, Wells S, Morup S (1994) Ultrafine maghemite particles: I. Studies of induced magnetic textures. J Phys: Condens Matter 6:3081–3090CrossRefGoogle Scholar
  16. Janáky C, Visy C (2008) Synthesis and characterization of poly(3-octylthiophene)/γ-Fe2O3 nanocomposite – a promising combination of superparamagnetic-thermoelectric-conducting properties. Synth Met 158:1009–1014CrossRefGoogle Scholar
  17. Kim HS, Sohn BH, Lee W, Lee J-K, Choi SJ, Kwon SJ (2002) Multifunctional layer-by-layer self-assembly of conducting polymers and magnetic nanoparticles. Thin Solid Films 419:173–177CrossRefGoogle Scholar
  18. Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372CrossRefGoogle Scholar
  19. Liu T-Y, Hu S-H, Liu D-M, Chen S-Y, Chen I-W (2009) Biomedical nanoparticle carriers with combined thermal and magnetic responses. Nano Today 4:52–65CrossRefGoogle Scholar
  20. MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers. Synth Met 125:11–22CrossRefGoogle Scholar
  21. Mamedov AA, Ostrander J, Aliev F, Kotov NA (2000) Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly. Langmuir 16:3941–3949CrossRefGoogle Scholar
  22. Mattoso LHC, Manohar SK, MacDiarmid AG, Epstein AJ (1995) Studies on the chemical syntheses and on the characteristics of polyaniline derivatives. J. Polym Sci Part A 33:1227–1234CrossRefGoogle Scholar
  23. Novak MA, Folly WSD, Sinnecker JP, Soriano S (2005) Relaxation in magnetic nanostructures. J Mag Magn Mat 294:133–140CrossRefGoogle Scholar
  24. Nowak U, Chantrell RW, Kennedy EC (2000) Monte Carlo simulation with time step quantification in terms of Langevin dynamics. Phys Rev Lett 84:163–166CrossRefGoogle Scholar
  25. Ohlan A, Singh K, Chandra A, Dhawan SK (2008) Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18 GHz. Appl Phys Lett 93:053114CrossRefGoogle Scholar
  26. Oono Y, Bahiana M (1988) 2/3 -Power Law for copolymer lamellar thickness implies a 1/3 –Power law for spinodal decomposition. Phys Rev Lett. 61:1109–1111CrossRefGoogle Scholar
  27. Oono Y, Puri S (1987) Computationally efficient modeling of ordering of quenched phases. Phys Rev Lett 58:836–839CrossRefGoogle Scholar
  28. Oono Y, Puri S (1988) Study of phase-separation dynamics by use of cell dynamical systems I. Modeling. Phys Rev A 38:434–453CrossRefGoogle Scholar
  29. Oono Y, Shiwa Y (1987) Computationally efficient modeling of block copolymer and Bernard pattern formations. Modern Phys Lett B 1:49–55CrossRefGoogle Scholar
  30. Oono Y, Yeung C (1987) A cell dynamical system model of chemical turbulence. J Stat Phys 48:593–644CrossRefGoogle Scholar
  31. Paterno LG, Fonseca FJ, Alcantara GB, Soler MAG, Morais PC, Sinnecker JP, Novak MA, Lima ECD, Leite FL, Mattoso LHC (2009a) Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles. Thin Solid Films 517:1753–1758CrossRefGoogle Scholar
  32. Paterno LG, Soler MAG, Fonseca FJ, Sinnecker JP, Sinnecker EHCP, Lima ECD, Novak MA, Morais PC (2009b) Layer-by-layer assembly of bifunctional nanofilms: surface-functionalized maghemite hosted in polyaniline. J Phys Chem C 113:5087–5095CrossRefGoogle Scholar
  33. Paterno LG, Soler MAG, Fonseca FJ, Sinnecker JP, Sinnecker EHCP, Lima ECD, Báo SN, Novak MA, Morais PC (2010) Magnetic nanocomposites fabricated via the layer-by-layer approach. J Nanosci Nanotechnol 10:2679–2685CrossRefGoogle Scholar
  34. Pedroza RC, da Silva SW, Soler MAG, Sartoratto PPC, Rezende DR, Morais PC (2005) Raman study of nanoparticle-template interaction in a CoFe2O4/SiO2-based nanocomposite prepared by sol–gel method. J Magn Magn Mater 289:139–141CrossRefGoogle Scholar
  35. Pereira Nunes JP, Bahiana M, Bastos CSM (2004) Magnetization curves as probes of Monte Carlo simulation of nonequilibrium states. Phys Rev E 69:56703CrossRefGoogle Scholar
  36. Pereira A, Alves S, Casanova M, Zucolotto V, Bechtold IH (2010) The use of colloidal ferrofluid as buiding blocks for nanostructured layer-by-layer films fabrication. J Nanopart Res 12:2779–2785CrossRefGoogle Scholar
  37. Polyak B, Fishbein I, Chorny M, Alferiev I, Williams D, Yellen B, Friedman G, Levy RJ (2008) High field gradient targeting of magnetic nanoparticle-loaded endothelial cells to the surfaces of steel stents. PNAS 105:698–703CrossRefGoogle Scholar
  38. Popplewell J, Sakhnini L (1995) The dependence of the physical and magnetic properties of magnetic fluids on particle size. J Magn Magn Mater 149:72–78CrossRefGoogle Scholar
  39. Qu TL, Zhao YG, Tian HF, Xiong CM, Guo SM, Li JQ (2007) Rectifying property and giant positive magnetoresistance of Fe3O4/SiO2/Si heterojunction. Appl Phys Lett. 90:223514CrossRefGoogle Scholar
  40. Ross CA (2001) Patterned magnetic recording media. Annu Rev Mater Sci 31:203–235CrossRefGoogle Scholar
  41. Royer F, Jamon D, Rousseau JJ, Roux H, Zins D, Cabuil V (2005) Magneto-optical nanoparticle-doped silica-titania planar waveguides. Appl Phys Lett. 86:01107CrossRefGoogle Scholar
  42. Sharma R, Chen CJ (2009) Newer nanoparticles in hyperthermia treatment and thermometry. J Nanopart Res 11:671–689CrossRefGoogle Scholar
  43. Shendruk TN, Desautels RD, Southern BW, van Lierop J (2007) The effect of surface spin disorder on the magnetism of γ-Fe2O3 nanoparticle dispersions. Nanotechnology 18:455704CrossRefGoogle Scholar
  44. Soler MAG, Lima ECD, Nunes ES, Silva FLR, Oliveira AC, Azevedo RB, Morais PC (2011) Spectroscopic study of maghemite nanoparticles surface-grafted with DMSA. J Phys Chem A 115:1003–1008CrossRefGoogle Scholar
  45. Suda M, Miyazaki Y, Hagiwara Y, Sato O, Shiratori S, Einaga Y (2005) Photoswitchable magnetic layer-by-layer films consisting of azobenzene derivatives and iron oxide nanoparticles. Chem Lett. 34:1028–1029CrossRefGoogle Scholar
  46. Wang X, Tang S, Liu J, He Z, An L, Zhang C, Hao J, Feng W (2009) Uniform Fe3O4-PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres. J Nanopart Res 11:923–929CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. A. G. Soler
    • 1
  • L. G. Paterno
    • 1
  • J. P. Sinnecker
    • 2
  • J. G. Wen
    • 3
  • E. H. C. P. Sinnecker
    • 4
  • R. F. Neumann
    • 4
  • M. Bahiana
    • 4
  • M. A. Novak
    • 4
  • P. C. Morais
    • 1
  1. 1.Universidade de Brasília, Instituto de FísicaBrasíliaBrazil
  2. 2.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  3. 3.Materials Science Division, Electron Microscopy CenterArgonne National LaboratoryArgonneUSA
  4. 4.Universidade Federal do Rio de Janeiro, Instituto de FísicaRio de JaneiroBrazil

Personalised recommendations