Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 7295–7301 | Cite as

Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter

  • A. C. Yanes
  • J. del-Castillo
  • J. Méndez-Ramos
  • V. D. Rodríguez
Research Paper

Abstract

We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO2 semiconductor nanocrystal (quantum dot), and LaF3, presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO2 quantum dot and subsequent efficient energy transfer to Eu3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb3+–Er3+ partitioned into low phonon LaF3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

Graphical Abstract

We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO2 semiconductor nanocrystal (quantum dot) and LaF3, presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO2 quantum dot and subsequent efficient energy transfer to Eu3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb3+–Er3+ partitioned into low phonon LaF3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

Keywords

Rare-earth-doped materials Sol–gel technique Luminescence Up-conversion Solar cells Energy conversion 

References

  1. Biswas A, Maciel GS, Friends CS, Prasad PN (2003) Upconversion properties of transparent Er3+–Yb3+ codoped LaF3–SiO2 glass-ceramics prepared by sol–gel method. J Non-Cryst Solids 316:393–397CrossRefGoogle Scholar
  2. Chen D, Wang Y, Zheng K, Guo T, Yu Y, Huang P (2007) Bright up-conversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+:β-YF3 nanocrystals. Appl Phys Lett 91:3–251903Google Scholar
  3. Dejneka MJ (1998) The luminescence and structure of novel transparent oxyfluoride glass-ceramics. J Non-Cryst Solids 239:149–155CrossRefGoogle Scholar
  4. del-Castillo J, Rodríguez VD, Yanes AC, Méndez-Ramos J (2005) Luminescent properties of transparent nanostructured Eu3+ doped SnO2–SiO2 glass-ceramics prepared by sol–gel method. Nanotechnology 16:300–303CrossRefGoogle Scholar
  5. del-Castillo J, Rodríguez VD, Yanes AC, Méndez-Ramos J (2008a) Energy transfer from the host to Er3+ dopants in semiconductor SnO2 nanocrystals segregated in sol–gel silica glasses. J Nanopart Res 10:499–506CrossRefGoogle Scholar
  6. del-Castillo J, Yanes AC, Méndez-Ramos J, Rodríguez VD (2008b) Luminescence of nanostructured SnO2–SiO2 glass-ceramics prepared by sol–gel method. J Nanosci Nanotechnol 8:2143–2146CrossRefGoogle Scholar
  7. del-Castillo J, Méndez-Ramos J, Yanes AC, Rodríguez VD (2009a) Wide colour gamut generated in triply lanthanide doped sol–gel nano-glass-ceramics. J Nanopart Res 11:879–884CrossRefGoogle Scholar
  8. del-Castillo J, Yanes AC, Velázquez JJ, Méndez-Ramos J, Rodríguez VD (2009b) Luminescent properties of Eu3+–Tb3+-doped SiO2–SnO2-based nano-glass–ceramics prepared by sol–gel method. J Alloys Compd 473:571–575CrossRefGoogle Scholar
  9. Méndez-Ramos J, Lavín V, Martín IR, Rodríguez-Mendoza U, Rodríguez VD, Lozano-Gorrín AD, Núñez P (2001) Role of the Eu3+ ions in the formation of transparent oxyfluoride glass ceramics. J Appl Phys 89:5307–5310CrossRefGoogle Scholar
  10. Morais EA, Ribeiro SJL, Scalvi LVA, Santilli CV, Ruggiero LO, Pulcinelli SH, Messaddeq Y (2002) Optical characteristics of Er3+–Yb3+ doped SnO2 xerogels. J Alloys Comp 344:217–220CrossRefGoogle Scholar
  11. Nogami M, Enomoto T, Hayakawa T (2002) Enhanced fluorescence of Eu3+ induced by energy transfer from nanosized SnO2 crystals in glass. J Lumin 97:147–152CrossRefGoogle Scholar
  12. Richards BS (2006) Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers. Sol Energy Mater Sol Cells 90:2329–2337CrossRefGoogle Scholar
  13. Shalav A, Richards BS, Green MA (2007) Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol Energy Mater Sol Cells 91:829–842CrossRefGoogle Scholar
  14. Strümpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, Svrcek V, del Cañizo C, Tobias I (2007) Modifying the solar spectrum to enhance silicon solar cell efficiency: an overview of available materials. Sol Energy Mater Sol Cells 91:238–249CrossRefGoogle Scholar
  15. Weber MJ (1986) In: Yen WM, Selzer PM (eds) Laser spectroscopy of solids, vol 49. Springer, BerlinGoogle Scholar
  16. Yanes AC, del-Castillo J, Torres ME, Peraza J, Rodríguez VD, Méndez-Ramos J (2004) Nanocrystal-size selective spectroscopy in SnO2:Eu3+ semiconductor quantum dots. Appl Phys Lett 85:2343–2345CrossRefGoogle Scholar
  17. Yanes AC, del-Castillo J, Méndez-Ramos J, Rodríguez VD, Torres ME, Arbiol J (2007) Luminescence and structural characterization of transparent nanostructured Eu3+-doped LaF3–SiO2 glass-ceramics prepared by solgel method. Opt Mater 29:999–1003CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. C. Yanes
    • 1
  • J. del-Castillo
    • 1
  • J. Méndez-Ramos
    • 2
  • V. D. Rodríguez
    • 2
  1. 1.Departamento Física BásicaUniversidad de La LagunaLa LagunaSpain
  2. 2.Departamento Física Fundamental y Experimental, Electrónica y SistemasUniversidad de La LagunaLa LagunaSpain

Personalised recommendations