Advertisement

Journal of Nanoparticle Research

, Volume 13, Issue 12, pp 7247–7252 | Cite as

Laser synthesis and size tailor of carbon quantum dots

  • Shengliang HuEmail author
  • Jun Liu
  • Jinlong Yang
  • Yanzhong Wang
  • Shirui Cao
Research Paper

Abstract

Carbon quantum dots (C-dots) with average sizes of about 3, 8, and 13 nm were synthesized by laser irradiation of graphite flakes in polymer solution. The obtained C-dots display size and excitation wavelength dependent photoluminescence behavior. The size control of C-dots can be realized by tuning laser pulse width. The original reason could be the effects of laser pulse width on the conditions of nucleation and growth of C-dots. Compared with short-pulse-width laser, the long-pulse-width laser would be better fitted to the size and morphology control of nanostructures in the different material systems.

Keywords

Carbon nanoparticle Laser ablation in liquid Size control Photoluminescence Thermodynamic theory 

Notes

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 50902126, 51172214), Shanxi Province Science Foundation for Youths (No. 2009021027), and Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi.

Supplementary material

11051_2011_638_MOESM1_ESM.doc (58 kb)
Supplementary material 1 (DOC 58 kb)

References

  1. Amendola V, Meneghetti M (2007) Controlled size manipulation of free gold nanoparticles by laser irradiation and their facile bioconjugation. J Mater Chem 17:4705–4710CrossRefGoogle Scholar
  2. Bai P, Hu S, Zhang T, Sun J, Cao S (2010) Effect of laser pulse parameters on the size and fluorescence of nanodiamonds formed upon pulsed-laser irradiation. Mater Res Bull 45:826–829CrossRefGoogle Scholar
  3. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  4. Brujan EA, Keen GS, Vogel A, Blake JR (2002) The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys Fluids 14:85–92CrossRefGoogle Scholar
  5. Chen CQ, Shi Y, Zhang YS, Zhu J, Yan YJ (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505(1–4)Google Scholar
  6. Gregorčič P, Petkovšek R, Možina J (2007) Investigation of a cavitation bubble between a rigid boundary and a free surface. J Appl Phys 102:094904(1–8)Google Scholar
  7. Hodes G (2007) When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv Mater 19:639–655CrossRefGoogle Scholar
  8. Hu S, Bai P, Tian F, Cao S, Sun J (2009a) Hydrophilic carbon onions synthesized by millisecond pulsed laser irradiation. Carbon 47:876–883CrossRefGoogle Scholar
  9. Hu S, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009b) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488CrossRefGoogle Scholar
  10. Hu S, Lu X, Yang J, Liu W, Dong Y, Cao S (2010) Prediction of formation of cubic boron nitride nanowires inside silicon nanotubes. J Phys Chem C 114:19941–19945CrossRefGoogle Scholar
  11. Hu S, Yang J, Liu W, Dong Y, Cao S (2011) Carbon nanocage bubbles produced by pulsed-laser ablation of carbon in water. Carbon 49:1505–1507CrossRefGoogle Scholar
  12. Khan SZ, Yuan Y, Abdolvand A, Schmidt M, Crouse P, Li L, Liu Z, Sharp M, Watkins KG (2009) Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid. J Nanopart Res 11:1421–1427CrossRefGoogle Scholar
  13. Lakowicz RZ (1999) Principles of fluorescence spectroscopy, 2nd edn. Klumer Academic/Plenum Publishers, New YorkGoogle Scholar
  14. Li Z, Tan B, Allix M, Cooper AI, Rosseinsky MJ (2008) Direct coprecipitation route to monodisperse dual-functionalized magnetic iron oxide nanocrystals without size selection. Small 4:231–239CrossRefGoogle Scholar
  15. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee S-T (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chem Int Ed 49:4430–4434CrossRefGoogle Scholar
  16. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–366CrossRefGoogle Scholar
  17. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed 46:6473–6475CrossRefGoogle Scholar
  18. Liu P, Cui H, Wang CX, Yang GW (2010) From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. Phys Chem Chem Phys 12:3942–3952CrossRefGoogle Scholar
  19. Lu J, Yang J-X, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquid. ACS Nano 3:2367–2375CrossRefGoogle Scholar
  20. Mafuné F, Kohno J-Y, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117CrossRefGoogle Scholar
  21. Oh W-K, Yoon H, Jiang J (2010) Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials 31:1342–1348CrossRefGoogle Scholar
  22. Park KH, Im SH, Park OO (2011) The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials. Nanotechnology 22:045602 (1–6)Google Scholar
  23. Sasaki K, Takada N (2010) Liquid-phase laser ablation. Pure Appl Chem 82:1317–1327CrossRefGoogle Scholar
  24. Singh SC, Mishra SK, Srivastava RK, Gopal R (2010) Optical properties of selenium quantum dots produced with laser irradiation of water suspended Se nanoparticles. J Phys Chem C 114:17374–17384CrossRefGoogle Scholar
  25. Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca M, Xie S-Y (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRefGoogle Scholar
  26. Takada N, Nakano T, Sasaki K (2010) Formation of cavitation-induced pits on target surface in liquid-phase laser ablation. Appl Phys A 101:255–258CrossRefGoogle Scholar
  27. Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun Y-P (2009) Photoinduced electron transfers with carbon dots. Chem Commun 25:3774–3776CrossRefGoogle Scholar
  28. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of up conversion nanocrystals through lanthanide doping. Nature 463:1061–1064CrossRefGoogle Scholar
  29. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737CrossRefGoogle Scholar
  30. Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Shengliang Hu
    • 1
    • 2
    Email author
  • Jun Liu
    • 1
  • Jinlong Yang
    • 3
  • Yanzhong Wang
    • 2
  • Shirui Cao
    • 2
  1. 1.Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China)Ministry of Education, Science and Technology on Electronic Test and Measurement LaboratoryTaiyuanPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China
  3. 3.State Key Laboratory of New Ceramics and Fine ProcessingTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations